A Survey on Transfer Learning for Urban Spatio-temporal Machine Learning

Yilun JIN

Supervisors: Professor Qiang YANG & Professor Kai CHEN **Committee:** Professor Wilfred NG (Chair) & Professor Dit-Yan YEUNG August 18th, 2021

Outline

- Introduction
- Urban Spatio-temporal Machine Learning
- Transfer Learning
- Urban Spatio-temporal Transfer Learning
 - Spatial Transfer Learning
 - Temporal Transfer Learning
 - Cross-modal Transfer Learning
- Conclusions and Future Work

Outline

• Introduction

- Urban Spatio-temporal Machine Learning
- Transfer Learning
- Urban Spatio-temporal Transfer Learning
 - Spatial Transfer Learning
 - Temporal Transfer Learning
 - Cross-modal Transfer Learning
- Conclusions and Future Work

Cities and Urban Problems

- Urbanization leads to many large cities
 - 54% population live in cities [UN, 2015]
 - Metropolises: New York, London, Tokyo, Hong Kong, etc.
- ...and also leads to important urban problems.
 - Environmental pollution
 - Energy consumption
 - Traffic management

Machine Learning for Urban Problems

• Triggers: Sensing and machine learning

- Smart sensors, GPS, etc. generate **spatio-temporal urban data.**
 - E.g. Trajectories, social networks, environment sensors…
- Machine learning models capture spatio-temporal information.
 - Spatio-temporal machine learning (STML): Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Graph Neural Networks (GNN), ...

IIVERSITY OF SCIENCE AND TECHNOLOGY

- Applications:
 - Traffic: Speed, travel time, ...
 - Human activities: Human flow, events,
 - **Businesses**: Demand & supply, recommendation, …

Data scarcity in cities

- Machine learning relies on big data.
 - More data leads to better performance.
- Data scarcity is common in cities.
 - Building new cities
 - Planning new urban services
- Problem: How to mitigate lack of data for urban STML?

New urban service: Tuen Ma Line, 2021

Solution: Transfer Learning

- Transfer learning:
 - Key idea: Borrow knowledge from different but related tasks.
 - Effective in visual recognition, text mining, etc.
 - Pre-training & fine-tuning in computer vision
 - Cross-domain sentiment classification [Li, 2020].

[Pan et al. 2009]

• Q: How can transfer learning be applied to urban STML?

Cross-domain language analysis [Li, 2020]

Outline

- Introduction
- Urban Spatio-temporal Machine Learning
- Transfer Learning
- Urban Spatio-temporal Transfer Learning
 - Spatial Transfer Learning
 - Temporal Transfer Learning
 - Cross-modal Transfer Learning
- Conclusions and Future Work

Urban Spatio-temporal Machine Learning

Q: How is spatiotemporal information used to organize the data? Q: How to extract the spatio-temporal information within the data? **Q:** How to formulate urban computing tasks into machine learning problems?

Urban Spatio-temporal Machine Learning: Data

• Data types in urban STML: Classified by **spatio-temporal correlations**

Sequence: Trajectories [Wang et al. 2019a]

Data Type	Point	Sequence	Static Map	Static Graph	ST Map	ST Graph	
Temporal Variant?	No	Yes	No	No	Yes	Yes	
Spatial Variant?	No	Optional	Yes	Yes	Yes	Yes	Traject
Euclidean Spatial Corr.?	/	Optional	Yes	Optional	Yes	Optional	
Non-Euclidean Spatial Corr.	/	Optional	No	Yes	No	Yes	
Data Format	$\begin{array}{l}(l,t,a)\\a\in\mathbb{R}^{f}\end{array}$	$[(t_i, a_i)]_{i=1}^T \text{ or } \\ [(l_i, t_i, a_i)]_{i=1}^T \\ a_i \in \mathbb{R}^f$	$\mathbf{M} \in \mathbb{R}^{W \times H \times f}$	$G = (V, \mathbf{X}, \mathbf{A})$ $\mathbf{X} \in \mathbb{R}^{ V \times f}$ $\mathbf{A} \in \mathbb{R}^{ V \times V }$	$\mathbf{M} \in \mathbb{R}^{T \times W \times H \times f}$	$G = (V, \mathbf{X}, \mathbf{A})$ $\mathbf{X} \in \mathbb{R}^{T \times V \times f}$ $\mathbf{A} \in \mathbb{R}^{T \times V \times V }$	Co
Example	Incidents events	Weather data Trajectory	POI distribution	Road network	Regional air-quality	Traffic speed sensor readings	34.5
Models	Feature Engineering	RNN	CNN	GNN	CNN + RNN	GNN + RNN	34°N

杳

港科技大學

HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

ST Maps: Urban Flow [Zhang et al. 2017]

10

Converting Trajectories into Video-like Data

Graph: Traffic network [Yu et al. 2018]

Urban Spatio-temporal Machine Learning: Data

- Multi-modal urban data:
 - e.g. Transport, environment, business [Zheng et al. 2014], etc.
- Leveraging multi-modal data is common in urban STML.
 - e.g. Use **road maps**, **points-of-interests** (POI), **weather**, and **transport** data to predict air quality [Wei et al. 2016a].

Urban Spatio-temporal Machine Learning: Problems

- Supervised learning: $\min_{f:\mathcal{X}\to\mathcal{Y}} \sum_{i=1}^{|D|} l(f(\mathbf{X}_i), y_i),$
 - Independent samples, label supervision.
 - Minimize loss function $l(\hat{y}, y)$
 - Squared loss $l(\hat{y}, y) = \|\hat{y} y\|^2$ for regression
 - Cross-entropy loss for classification $l(\hat{y}, y) = -\sum y_i \log \hat{y_i}$

Converting Trajectories into Video-like Data

Urban flow forecasting [Zhang et al. 2017]

- Examples:
 - Forecasting: $\mathbf{X} = (\mathbf{X}_{t-k} \dots \mathbf{X}_{t-1}), y = \mathbf{X}_t$
 - Estimation (e.g. Travel Time): $\mathbf{X} = (\text{trajectory, metadata}), y = \text{travel time}$

Urban Spatio-temporal Machine Learning: Models

- Models capture spatio-temporal relations.
- Spatial relations:
 - Convolutional Neural Nets (CNN): Euclidean, grid data.
 - **Convolution** and **pooling** capture relations within a k*k grid.
 - Applications: Region flow forecasting [Zhang et al. 2017]
 - Graph Neural Nets (GNN): Non-Euclidean, network data
 - Aggregate information from irregular neighbors via edges.
 - Applications: Traffic forecasting [Geng et al. 2019]

Converting Trajectories into Video-like Data Deep Spatio-Temporal Residual Networks CNN for region flow forecasting [Zhang et al. 2017]

GNN for taxi demand forecasting [Geng et al. 2019]

Urban Spatio-temporal Machine Learning: Models

- **Temporal** correlations:
 - Recurrent Neural Nets (RNN)
 - Inputs share a **memory** to remember previous observations.
- Hybrid Models
 - Jointly model spatio-temporal correlations.
 - Combine RNN with CNN/GNN.
 - e.g. DCRNN [Li et al. 2018] for traffic forecasting ConvLSTM [Shi et al. 2015] for precipitation.

DCRNN [Li et al. 2018]

ConvLSTM [Shi et al. 2015]

Outline

- Introduction
- Urban Spatio-temporal Machine Learning
- Transfer Learning
- Urban Spatio-temporal Transfer Learning
 - Spatial Transfer Learning
 - Temporal Transfer Learning
 - Cross-modal Transfer Learning
- Conclusions and Future Work

Transfer learning

- **Definitions** [Pan et al. 2009]:
 - **Domain**: $\mathcal{D} = (\mathcal{X}, P(X))$ Feature space and feature distribution.
 - Task: $\mathcal{T} = (\mathcal{Y}, P(y|X))$ Label space and label conditional distribution.

- Transfer learning: Improve learning on $\mathcal{D}_T, \mathcal{T}_T$ using knowledge from $\mathcal{D}_S, \mathcal{T}_S$ $\mathcal{D}_S \neq \mathcal{D}_T$ or $\mathcal{T}_S \neq \mathcal{T}_T$
- Key Challenge: Identify domain-invariant knowledge.
- Categorization:
 - Homogeneous: $\mathcal{X}_S = \mathcal{X}_T, \mathcal{Y}_S = \mathcal{Y}_T$
 - Heterogeneous: $\mathcal{X}_S \neq \mathcal{X}_T$ or $\mathcal{Y}_S \neq \mathcal{Y}_T$

Transfer learning: Methods

- Transfer learning methods: "What to transfer"
 - Instance-based: Reuse source instances to train on the target domain.
 - Feature-based: Learn domain-invariant features for both domains and learn a common downstream model.
 - **Model-based**: Encode knowledge in model parameters and reuse parameters for the target domain.

Transfer Methodology	Key Assumption	Key Challenge	Categorization	Related Papers	Remarks
Instance-based	Some source samples are similar to target and can be reused.	Adequately re-weight source samples to train target model.	Non-inductive Inductive	[35, 36, 37] [38, 16]	
Feature-based	Source and target data share common latent factors.	Measure and maximize domain invariance of features.	Explicit (domain distance) Implicit (adversarial)	[39, 40, 41, 42] [43, 44, 45, 46]	MMD is a common distance metric.
Model-based	Model parameters encode common knowledge across domains.	Identify transferrability of model parameters.	Regularization Fine-tuning	[47, 48, 49] [50, 51, 30]	Fine-tuning popular in deep learning.

Transfer learning: Instance-based

- Assumption: Some samples from source are similar to target.
- Key Challenge: Assign weights to source samples to train target model.
- Representative Method: TrAdaBoost [Dai et al. 2007].
 - Intuition:
 - Wrong target samples: Increase weight
 - Wrong source samples: Decrease weight (Likely dissimilar from target).
 - Method:
 - Source and target samples: $D_S = \{X_i, y_i\}_{i=1}^n, D_T = \{X_j, y_j\}_{j=n+1}^{n+m}, y \in \{0, 1\}$

Sample weights
$$\mathbf{w}^0 = [w_1^0, \dots, w_{n+m}^0]$$
. Source
• Iterative Reweighting;
 $w_i^{t+1} = \begin{cases} w_i^t \beta^{|h_t(X_i) - y_i|}, i \le n, \\ w_i^t \beta_t^{-|h_t(X_i) - y_i|}, n+1 \le i \le n+m. \end{cases}$ $0 < \beta, \beta_t < 1.$
Target
Target

18

Transfer learning: Feature-based

- Assumption: Domains share common latent factors.
- Challenge: Measure & minimize domain distance to identify common factors.
- Methods: Minimize Maximum Mean Discrepancy [Borgwardt et al. 2006]

$$\operatorname{MMD}\left(D_{S}, D_{T}\right) = \left\| \frac{1}{|D_{S}|} \sum_{i=1}^{|D_{S}|} \Phi_{K}\left(\mathbf{x}_{i}^{S}\right) - \frac{1}{|D_{T}|} \sum_{j=1}^{|D_{T}|} \Phi_{K}\left(\mathbf{x}_{j}^{T}\right) \right\|_{\mathcal{H}} , \quad Kernel \text{ function} \\ \mathcal{H}: \text{Kernel mapping of } K \\ \mathcal{H}: \text{KHS of kernel } K.$$

E.g. Transfer Component Analysis (TCA) [Pan et al. 2010]

Reformulation of MMD²

$$\min_{\mathbf{W}} \operatorname{tr}(\mathbf{W}^T \mathbf{K} \mathbf{L} \mathbf{K} \mathbf{W}) + \mu \operatorname{tr}(\mathbf{W}^T \mathbf{W})$$

s.t. $\mathbf{W}^T \mathbf{K} \mathbf{H} \mathbf{K} \mathbf{W} = \mathbf{I}$

Transfer learning: Feature-based (Cont)

G UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Methods: Minimize MMD
 - E.g. DDC [Tzeng et al. 2014]
 - Apply MMD regularization on the output features
 - Jointly minimize classification loss and MMD.
- Methods: Adversarial learning
 - Intuition: Domain invariant features should be
 - **1.** Discriminative w.r.t. labels
 - **2.** Indiscriminative w.r.t. source VS target domain
 - DANN [Ganin et al. 2016]
 - Feature Extractor G, Classifier C, Domain classifier D.
 - Minimize label loss $l_y(G, C)$: Intuition 1
 - Maximize domain loss $l_d(G, D)$: Intuition 2

$$\min_{G,C} \sum_{D} V(G,C,D) = \frac{1}{n_s} \sum_{i=1}^{n_s} l_y^i(G,C) - \lambda \left(\frac{1}{n_s} \sum_{i=1}^{n_s} l_d^{i,s}(G,D) + \frac{1}{n_t} \sum_{i=1}^{n_t} l_d^{i,t}(G,D) \right),$$

2021/8/30

Transfer learning: Model-based

- Assumption: Model parameters encode general data structures.
- Key Challenge: Find transferrable parameters.
- Methods:
 - Train transferrable parameters with regularization
 - e.g. MT-SVM [Evgeniou and Pontil, 2004]
 - Identify transferrable parameters from well-trained models
 - [Yosinski et al. 2014]: Initialize from well-trained models improve generalization.
 - Fine-tuning: common in deep learning
 - CV: ImageNet pre-training.
 NLP: BERT [Devlin et al. 2019], GPT-3 [Brown et al. 2020] ...

Outline

- Introduction
- Urban Spatio-temporal Machine Learning
- Transfer Learning
- Urban Spatio-temporal Transfer Learning
 - Spatial Transfer Learning
 - Temporal Transfer Learning
 - Cross-modal Transfer Learning
- Conclusions and Future Work

Urban Spatio-temporal Transfer Learning

- When to apply, what to transfer in urban STTL?
 - Planning for new cities.
 - Transfer from existing cities: **spatial STTL**.
 - Planning for new urban services.
 - Transfer from existing urban services: cross-modal STTL.
 - Data evolution.
 - Adapt previous knowledge to the present: temporal STTL.

Development in Greater Bay Area: Spatial STTL

Adaptation to COVID-19: **Temporal STTL** [ICAO, 2020]

IG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Urban Spatio-temporal Transfer Learning

• Key Challenges:

- Follows from urban STML & transfer learning.
- Common **spatio-temporal** patterns
- Common **multi-modal** knowledge

Spatial STTL

• Formulation:

- Target: city with limited data
- Source: city with abundant data of the same type
- Homogeneous TL: $P(X)_S \neq P(X)_Y$ or $P(y|X)_S \neq P(y|X)_T$
 - Differences in urban layout, etc.
- Coarse VS Fine-grained methods:
 - **Coarse**-grained methods: Treat each city as a whole and apply transfer learning
 - Fine-grained methods: Divide cities as small regions. Find similar region pairs and transfer between them.

Spatial STTL: Coarse-grained

- Feature-based: Extract features and project into common space.
 - Commonly **multi-modal** features: POI, land usage, transportation, etc.

CoFA [Liu et al. 2018a]

- Problem: Inferring dockless bike distribution
- Transfer method: Factor Analysis,

 $\mathbf{H}_{s:t}^*, \mathbf{W}^*, \mu^* = \arg\min_{\mathbf{H}_{s:t}, \mathbf{W}, \mu} \|\mathbf{M}_{s:t} - \mathbf{W}\mathbf{H}_{s:t} - \mu\|_F^2,$

• Project original features into a unified feature space by **minimizing reconstruction error**.

[Pang et al. 2020] and [He et al. 2020]

IIVERSITY OF SCIENCE AND TECHNOLOGY

- Problem: Inferring human mobility in new cities
- Transfer method: TCA [Pan et al. 2010]

(a) Trajectories of Source Cities (b) SC Feature Extraction (c) Domain Generalization (d) Mobility Intention Model

Spatial STTL: Coarse-grained (Cont)

- Model-based methods: Train a model on source, re-use on target.
 - Two parts of models: general VS city-specific.

PR-UIDT [Ding et al. 2019]

- **Problem**: Cross-city, cross-user POI recommendation
- Transfer method: Regularization
 - Split both user and POI embeddings into general and non-local parts.
 - Regularize on the non-local part.

Spatial STTL: Fine-grained

- Transfer may lead to higher error than non-transfer:
 - **Negative Transfer**: when domains differ a lot.
 - e.g. DC → NYC.
 DC is far less populated than NYC.
- Solution: Fine-grained methods
 - Idea: Cities may be dissimilar, but they must have similar parts (e.g. residential areas, business areas). These parts share common knowledge.
 - Methodology: Divide-and-match
 - Divide cities into smaller regions.
 - Obtain similar region pairs.
 - Transfer between similar regions instead of whole cities.

[Wang et al. 2019b] D.C.→Chicago Chicago→D.C. D.C.→NYC NYC→D.C. 1-day 3-day 1-day 3-day 1-day 3-day 1-day 3-day **Target Data Only** ARIMA 0.7400.694 0.707 0.661 0.360 0.341 0.707 0.661 0.350 0.359 DeepST 0.771 0.711 1.075 0.767 1.075 0.767 0.376 ST-ResNet 0.914 0.703 0.869 0.738 0.349 0.869 0.738 Source & Target Data 0.713 DeepST (FT) 0.652 0.611 0.672 0.619 0.363 0.369 0.711 0.385 ST-ResNet (FT) 0.695 0.623 0.349 0.667 0.615 0.696 0.691

Spatial STTL: Fine-grained

- Option 1: Using **fixed** similarity of **raw features** *M_s*, *M_t*.
 - Compute region-wise similarity ρ_{r_s,r_t} .
 - Minimize domain distance for matched regions $\Delta = \{(r_t, r_s), \forall r_t\},\$

CityTransfer [Guo et al. 2018]

- Problem: Cross-city site recommendation
 - Similarity Measure: Pearson correlation
 - Train autoencoder f to minimize

$$\sum_{(r_t, r_s) \in \Delta} \rho_{r_t, r_s} \| f(\mathbf{M}_{r_s}) - f(\mathbf{M}_{r_t}) \|^2$$

and use $f(M_s)$, $f(M_t)$ for recommendation.

RegionTrans [Wang et al. 2019b]

- **Problem**: Spatio-temporal forecasting
 - Similarity Measure: Cosine similarity
 - Pre-train CNN-LSTM $f_2(f_1(x))$ on source.
 - Fine-tune $f_2(f_1(x))$ on target:

$$\sum_{r_t} \|y_{r_t} - f_2(f_1(x_{r_t}))\|^2 + \sum_{\substack{(r_s, r_t) \in \Delta \\ \text{Matched domain} \\ \text{distance}}} \rho_{r_s, r_t} \|f_1(x_{r_t}) - f_1(x_{r_s})\|^2$$

Spatial STTL: Fine-grained (Cont)

• Option 2: Using trainable similarity of output features.

 $\rightarrow \hat{y}_{r_c,k_c}$

MetaST [Yao et al. 2019]

- Problem: Spatio-temporal forecasting.
- Methods: Transfer attention values
 - Cluster source regions using k-means
 - Set memory $M \in \mathbb{R}^{k \times f}$ for each cluster.
 - For source region r_c , use output h_{r_c,k_c} to query M, get weights p_{r_c,k_c} . Match p_{r_c,k_c} with its cluster id.
 - Use attention output z_{r_c,k_c} as complement features for target regions.

ST-Mem p_{r_c,k_c}

WANT [Liu et al. 2019]

- **Problem**: Cross-city site recommendation
- Methods: Transferability re-weighting.
 - Architecture: DANN [Ganin et al. 2016]
 - Weight each source sample with target via:
 - **Domain similarity**: According to *D*.
 - **Data quality**: According to (*G*, *C*).
 - Minimize weighted DANN loss:

$$\min_{G,C} \max_{D} V(G,C,D) = \frac{1}{n_s} \sum_{i=1}^{n_s} w_i b_y^i(G,C) - \lambda \left(\frac{1}{n_s} \sum_{i=1}^{n_s} w_i b_d^{i,s}(G,D) + \frac{1}{n_t} \sum_{i=1}^{n_t} l_d^{i,t}(G,D) \right),$$

Spatial STTL: Fine-grained (Cont)

• Summary of fine-grained methods

Related Work	Task	Matching Data	Matching Metric	Trainable Matching
[Wang et al. 2019b]	Spatio-temporal	Raw features	Cosine Similarity	No
[Yao et al. 2019]	Forecasting	Output features	Implicitly via Attention	Yes
[Guo et al. 2018]	Cross-city site	Raw features	Pearson correlation	No
[Liu et al. 2021]	recommendation	Output features	Implicitly via domain and label classifier	Yes

- Raw feature matching:
 - Pro: Stable. Incorporates multi-modal information.
 - Con: Performance relies on quality of features.
- Output feature matching;
 - Pro: Flexible, trainable matching.
 - **Con**: Limited target data \rightarrow overfit.

[Wang et al. 2019b] Check-in (auxiliary) is related to crowd flow (limited).

u the hong kong university of science and technology

Temporal STTL

- Temporal STTL tackles data distribution shifts.
 - Two kinds of distribution shifts
- Formulation:
 - Homogeneous TL
 - Source: Previous periods
 - Target: Current period

Long-term (monthly) changes

Sudden changes, e.g. holiday [Zhang et al. 2017]

- . 2017] [Karacasu et al. 2011]
- Related Concept: Continual learning [Chen and Liu, 2018].
 - A series of domains and tasks $\mathcal{D}_i, \mathcal{T}_i, i = 1 \dots N$,
 - For each n, learn task \mathcal{T}_n with knowledge from $\mathcal{T}_i, i < n$.
 - In temporal STTL, each timestamp defines a task.

Temporal STTL for Indoor Localization

- Indoor localization: signal strength $\mathbf{s} = (s_1, \dots s_m) \rightarrow \text{ location } (x, y)$
- Temporal TL for indoor localization:
 - **Goal**: At t_k , adapt f_1 to f_k using $\{\mathbf{s}_{ki}, l_{ki}\}_{i=1}^l$, $\{\mathbf{s}_{kj}\}_{j=l+1}^{l+u}$
 - The first *l* labeled data are from **fixed** positions: **Reference points.**
- Feature-based method: LeManCoR [Pan et al. 2007]
 - Localization with extended Manifold Co-Regularization
 - Assumption: Models from different times agree on reference points.

$$f_{1}^{*}, f_{k}^{*} = \arg\min_{f_{1} \in H_{K_{1}}, f_{k} \in H_{K_{k}}} \frac{\mu}{l_{1}} \sum_{i=1}^{l_{1}} V(\mathbf{s}_{1i}, l_{1i}, f_{1}) + \gamma_{A}^{(1)} \|f_{1}\|_{H_{K_{1}}} + \gamma_{B}^{(1)} \|f_{1}\|_{I} \\ + \frac{1}{l} \sum_{i=1}^{l} V(\mathbf{s}_{ki}, l_{ki}, f_{k}) + \gamma_{A}^{(2)} \|f_{k}\|_{H_{K_{k}}} + \gamma_{B}^{(2)} \|f_{k}\|_{I} + \frac{\gamma_{I}}{l} \sum_{i=1}^{l} [f_{1}(\mathbf{s}_{1i}) - f_{k}(\mathbf{s}_{ki})]^{2}, |f|_{I}: \text{ Complexity regularization}$$

Temporal STTL for Indoor Localization (Cont)

- Model-based method: TrHMM [Zheng et al. 2008]
 - Transferring Hidden Markov Models: (L, O, λ, A, π)
 - L, O: Location & observation space
 - $\lambda = P(o|l) = N(\mu, \Sigma), l \in L, o \in O$
 - A: Transition matrix between locations L. π : Initial distribution over L

- Assumption: Fixed relations between reference (r) and other points (k) across t.
- Method:
 - 1. Estimate λ_1 at time t_1 .
 - 2. Obtain relations between reference and other points via regression.

$$s_j^k = \alpha_{0j}^k + \alpha_{1j}^k r_{1j} + \dots \alpha_{lj}^k r_{lj} + \varepsilon_j,$$

3. At time *t*, **re-use** the **regression** model to reconstruct data, and **fine-tune** λ_t $\mu_t = \beta \mu_1 + (1 - \beta) \mu_t^{reg}$,

$$\Sigma_t = \beta (\Sigma_1 + (\mu_t - \mu_1)(\mu_t - \mu_1)^T) + (1 - \beta) (\Sigma_t^{reg} + (\mu_t - \mu_t^{reg})(\mu_t - \mu_t^{reg})^T)$$

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Cross-modal STTL

- Two scenarios of cross-modal STTL:
 - Missing feature modality:
 - e.g. Predict air quality using **road maps**, **POI, weather**, and **transport** data transport data is missing in a city.
 - Solution: Learn the relation between existing modalities and the missing one.
 - Heterogeneous TL: $\mathcal{X}_S
 eq \mathcal{X}_T$
 - Missing label modality:
 - e.g. Detect ride-sharing car trajectories with **no labeled trajectories**.
 - Solution: Find related data (e.g. taxis), and link source labels with target ones.
 - Heterogeneous TL: $\mathcal{Y}_S
 eq \mathcal{Y}_T$

azardous 00-500)

Air Quality

Example: Predicting air quality

Baodin

 \mathbf{D}_2

 \mathbf{D}_1

Cross-modal STTL: Missing feature modality

- FLORAL [Wei et al. 2016a]
 - Assumption: Relations between modalities are invariant across domains.
 - Key Idea: Extract and transfer such relations
 - Methods:
 - Relation encoding: Build sample-modality graph Nodes: Each sample in each modality Intra-modality edges: feature distance Inter-modality edges: sample proximity
 - **Relation learning:** Cluster sample-modality graph. Each cluster forms **base vectors** in **dictionaries**.
 - Transfer: Share dictionaries across domains Sparse coding to obtain domain-invariant features. Multi-modal TrAdaBoost to reweight modalities.

Cross-modal STTL: Missing label modality

NG UNIVERSITY OF SCIENCE AND TECHNOLOGY

- CoHTL [Wei et al. 2016b]
 - Target: sensor data with few labels. Source: Social messages
 - Key Idea: Link samples & labels from social messages to sensors.
 - Methods:
 - Label linking: Topic model & word embedding.
 - Sample linking: Spatio-temporal proximity.
 - Feature-based transfer: Link regularization.

 $\mathcal{O} = \left\| \mathbf{P} - \mathbf{U} \mathbf{V}_1 \|_F^2 + \| \mathbf{Q} - \mathbf{W} \mathbf{V}_2 \|_F^2 \right\|_F$ Reconstruction error Example of spatio-temporal sample linking Sequences and the sample linking sample linking sample linking sample links (S_{ij}).

eatexercisetravelhave
dinnergo
outdoorbreak-
fastexercisebuy
tickets

Results of label linking by word embeddings.

Summary of urban STTL

- Spatial: Homogeneous TL
 - **Coarse** VS **Fine**-grained methods: transfer between **similar** parts
- Temporal: Homogeneous TL,
 - **Example:** Temporal STTL for indoor localization (via reference points)

• Cross-modal: Heterogeneous TL

- **Cases:** Missing feature/label modality
- Key: Relations between modalities.

Urban	Existing	Common ST Patterns				Common Multi-modal Knowledge				
STTL	Works	Coarse-	grained	Fi	ne-grained	đ	Feature	Computing	Sparse	Co-
Setting	WOIKS	Feature	Model	Instance	Feature	Model	Concatenation	Similarity	Coding	training
	Liu et al. [63]	\checkmark					✓			
	Liu et al. [64]	\checkmark					\checkmark			
	Pang et al. [65]	\checkmark					\checkmark			
	He et al. [66]	\checkmark					\checkmark			
	Li et al. [67]	\checkmark								
	Ding et al. [68]		\checkmark							
Spatial	Wang et al. [69]		\checkmark							
Transfer	Wang et al. [70]				\checkmark	\checkmark		\checkmark		
Learning	Yao et al. [71]					\checkmark				
	Song et al. [72]				\checkmark	\checkmark		\checkmark		
	Mallick et al. [73]					\checkmark				
	Guo et al. [74]				\checkmark		\checkmark	\checkmark		
	Liu et al. [75]			\checkmark	\checkmark		\checkmark			
	Wang et al. [22]			\checkmark	\checkmark		\checkmark			
Temporal	Pan et al [55]	ĺ			<u> </u>					
Transfer	Zheng et al. [76]				•	\checkmark				
Learning	Zhong et ul. [70]					•				
Cross-modal	Wei et al. [77]			\checkmark	\checkmark				\checkmark	
Transfer	Wang et al. [78]			\checkmark		\checkmark				\checkmark
Learning	Wei et al. [79]				\checkmark			\checkmark		

Conclusion

- Motivation: Urban computing + machine learning meets lack of data.
- Challenge: Common ST patterns & Common multi-modal knowledge
- Categorization: Spatial, temporal and cross-modal
- Future directions:
 - Transfer learning with **effective multi-modal fusion**:
 - Existing works mainly use feature concat or feature similarity.
 - Transfer learning with **dynamics**:
 - Temporal STTL with detection of data shifts.
 - Adaptive knowledge transfer at different periods.
 - Transfer learning with **privacy**
 - Spatio-temporal data may contain user privacy.

- [UN, 2015] UN, DESA. "World urbanization prospects: The 2014 revision." *United Nations Department of Economics and Social Affairs, Population Division: New York, NY, USA* 41 (2015).
- [Zhang et al. 2020] Zhang, Yingxue, et al. "Curb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Generative Adversarial Networks." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
- [Liang et al. 2021] Liang, Yuxuan, et al. "Fine-Grained Urban Flow Prediction." Proceedings of the Web Conference 2021. 2021.
- [Sun et al. 2017] Sun, Chen, et al. "Revisiting unreasonable effectiveness of data in deep learning era." Proceedings of the IEEE international conference on computer vision. 2017.
- [Pan et al. 2009] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2009): 1345-1359.
- [Li 2020] Li, Zheng. Neural knowledge transfer for low-source sentiment analysis: cross-domain, cross-task & cross-lingual. Doctoral Dissertation, HKUST. 2020.
- [Shen et al. 2019] Shen, Zhiqiang, et al. "Object detection from scratch with deep supervision." IEEE transactions on pattern analysis and machine intelligence 42.2 (2019): 398-412.
- [Zhou et al. 2020] Zhou, Zhengyang, et al. "RiskOracle: A Minute-Level Citywide Traffic Accident Forecasting Framework." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 01. 2020.

- [Wang et al. 2019a] Wang, Leye, et al. "Ridesharing car detection by transfer learning." Artificial Intelligence 273 (2019): 1-18.
- [Xu et al. 2018] Xu, Zhe, et al. "Large-scale order dispatch in on-demand ride-hailing platforms: A learning and planning approach." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.
- [Zhang et al. 2017] Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep spatio-temporal residual networks for citywide crowd flows prediction." Thirty-first AAAI conference on artificial intelligence. 2017.
- [Li et al. 2018] Li, Yaguang et al., Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting, International Conference on Learning Representations, 2018.
- [Shi et al. 2015] Shi, Xingjian et al. "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." Advances in neural information processing systems. 2015.
- [Dai et al. 2007] Dai, Wenyuan et al. Boosting for transfer learning. Proceedings of the 24th international conference on Machine learning (ICML '07). 2007.
- [Pan et al. 2010] Pan, Sinno Jialin, et al. "Domain adaptation via transfer component analysis." IEEE transactions on neural networks 22.2 (2010): 199-210.
- [Borgwardt et al. 2006] Borgwardt, Karsten M., et al. "Integrating structured biological data by kernel maximum mean discrepancy." Bioinformatics 22.14 (2006): e49-e57.
- [Tzeng et al. 2014] Tzeng, Eric, et al. "Deep domain confusion: Maximizing for domain invariance." arXiv preprint arXiv:1412.3474 (2014).

- [Yu et al. 2018] Yu, Bing, Haoteng Yin, and Zhanxing Zhu. "Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting." Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018.
- [Zheng et al. 2014] Zheng, Yu, et al. "Urban computing: concepts, methodologies, and applications." ACM Transactions on Intelligent Systems and Technology (TIST) 5.3 (2014): 1-55.
- [Wei et al. 2016a] Wei, Ying, Yu Zheng, and Qiang Yang. "Transfer knowledge between cities." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
- [Ganin et al. 2016] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The journal of machine learning research 17.1 (2016): 2096-2030
- [Evgeniou and Pontil, 2004] Evgeniou, Theodoros, and Massimiliano Pontil. "Regularized multi--task learning." Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 2004.
- [Yosinski et al. 2014] Yosinski, Jason, et al. "How transferable are features in deep neural networks?." Advances in Neural Information Processing Systems 27 (2014): 3320-3328.
- [Devlin et al. 2019] Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 2019.
- [Brown et al. 2020] Brown, Tom, et al. Language Models are Few-Shot Learners, Advances in Neural Information Processing Systems 33 (2020)
- [Rosenstein et al. 2005] Rosenstein, Michael T., et al. "To transfer or not to transfer." NIPS 2005 workshop on transfer learning. Vol. 898. 2005.

- [Liu et al. 2018a] Liu, Zhaoyang, Yanyan Shen, and Yanmin Zhu. "Inferring dockless shared bike distribution in new cities." Proceedings of the eleventh ACM international conference on web search and data mining. 2018.
- [Liu et al. 2018b] Liu, Zhaoyang, Yanyan Shen, and Yanmin Zhu. "Where Will Dockless Shared Bikes be Stacked? ---Parking Hotspots Detection in a New City." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.
- [Pang et al. 2020] Pang, Yanbo, et al. "Intercity Simulation of Human Mobility at Rare Events via Reinforcement Learning." Proceedings of the 28th International Conference on Advances in Geographic Information Systems. 2020.
- [He et al. 2020] He, Tianfu, et al. "What is the human mobility in a new city: Transfer mobility knowledge across cities." Proceedings of The Web Conference 2020. 2020.
- [Ding et al. 2019] Ding, Jingtao, et al. "Learning from hometown and current city: Cross-city POI recommendation via interest drift and transfer learning." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3.4 (2019): 1-28.
- [Wang et al. 2018] Wang, Zhaodong, et al. "Deep reinforcement learning with knowledge transfer for online rides order dispatching." 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018.
- [Wang et al. 2019b] Wang, Leye, et al. "Cross-city Transfer Learning for Deep Spatio-temporal Prediction." IJCAI International Joint Conference on Artificial Intelligence. 2019.

- [Guo et al. 2018] Guo, Bin, et al. "Citytransfer: Transferring inter-and intra-city knowledge for chain store site recommendation based on multi-source urban data." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1.4 (2018): 1-23.
- [Yao et al. 2019] Yao, Huaxiu, et al. "Learning from multiple cities: A meta-learning approach for spatial-temporal prediction." The World Wide Web Conference. 2019.
- [Liu et al. 2021] Liu, Yan, et al. "Knowledge Transfer with Weighted Adversarial Network for Cold-Start Store Site Recommendation." ACM Transactions on Knowledge Discovery from Data (TKDD) 15.3 (2021): 1-27.
- [Karacasu et al. 2011] Karacasu, Murat, et al. "Variations in traffic accidents on seasonal, monthly, daily and hourly basis: Eskisehir case." Procedia-Social and Behavioral Sciences 20 (2011): 767-775.
- [Chen and Liu 2018] Chen, Zhiyuan, and Bing Liu. "Lifelong machine learning." Synthesis Lectures on Artificial Intelligence and Machine Learning 12.3 (2018): 1-207.
- [Pan et al. 2007] Pan, Sinno Jialin, et al. "Adaptive localization in a dynamic WiFi environment through multi-view learning." AAAI. Vol. 7. 2007.
- [Zheng et al. 2008] Zheng, Vincent Wenchen, et al. "Transferring Localization Models over Time." AAAI. 2008.
- [Wei et al. 2016b] Wei, Ying, et al. "Instilling social to physical: Co-regularized heterogeneous transfer learning." Thirtieth AAAI Conference on Artificial Intelligence. 2016.

