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Cities and Urban Problems

• Urbanization leads to many large cities
• 54% population live in cities [UN, 2015]
• Metropolises: New York, London, Tokyo, Hong Kong, etc. 

• …and also leads to important urban problems. 
• Environmental pollution
• Energy consumption
• Traffic management
• ……
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Machine Learning for Urban Problems
• Triggers: Sensing and machine learning

• Smart sensors, GPS, etc. generate spatio-temporal urban data. 
• E.g. Trajectories, social networks, environment sensors…

• Machine learning models capture spatio-temporal information.
• Spatio-temporal machine learning (STML): Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), Graph Neural Networks (GNN), …

• Applications: 
• Traffic: Speed, travel time, …
• Human activities: Human flow, events, 
• Businesses: Demand & supply, 

recommendation, …
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Traffic jams
[Zhang et al. 2020]

Human Flow
[Liang et al. 2021]



Data scarcity in cities

• Machine learning relies on big data. 
• More data leads to better performance. 

• Data scarcity is common in cities. 
• Building new cities
• Planning new urban services

• Problem: How to mitigate lack of data
for urban STML? 
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New urban service: 
Tuen Ma Line, 2021

Object detection, 
Performance VS 
data size
[Sun et al. 2017]

New city: 
Xiong`an New Area, 
China



Solution: Transfer Learning
• Transfer learning:

• Key idea: Borrow knowledge from different but related
tasks. 

• Effective in visual recognition, text mining, etc. 
• Pre-training & fine-tuning in computer vision
• Cross-domain sentiment classification [Li, 2020]. 

• Q: How can transfer learning be applied to urban STML? 
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[Pan et al. 2009]

Cross-domain language analysis [Li, 2020]ImageNet Pre training in CV [Shen et al. 2019]



Outline

• Introduction
• Urban Spatio-temporal Machine Learning
• Transfer Learning
• Urban Spatio-temporal Transfer Learning

• Spatial Transfer Learning
• Temporal Transfer Learning
• Cross-modal Transfer Learning

• Conclusions and Future Work

2021/8/30 8



Urban Spatio-temporal Machine Learning

2021/8/30 9

Data Process &
Feed into Models Optimize Problems

Q: How is spatio-
temporal 
information used 
to organize the 
data? 

Q: How to 
extract the 
spatio-temporal 
information 
within the data? 

Q: How to formulate 
urban computing 
tasks into machine 
learning problems?  



Urban Spatio-temporal Machine Learning: Data

• Data types in urban STML: 
Classified by spatio-temporal correlations
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Sequence: 
Trajectories
[Wang et al. 2019a]

Graph: Traffic network
[Yu et al. 2018]

ST Maps: 
Urban Flow
[Zhang et al. 2017]



Urban Spatio-temporal Machine Learning: Data

• Multi-modal urban data: 
• e.g. Transport, environment, business [Zheng et al. 2014], etc. 

• Leveraging multi-modal data is common in urban STML. 
• e.g. Use road maps, points-of-interests (POI), weather, and transport data to predict 

air quality [Wei et al. 2016a]. 
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Multi-modal urban data [Zheng et al. 2014] Use of multi-modal data [Wei et al. 2016a]



Urban Spatio-temporal Machine Learning: Problems

• Supervised learning: 
• Independent samples, label supervision.  
• Minimize loss function 

• Squared loss for regression
• Cross-entropy loss for classification

• Examples: 
• Forecasting: 
• Estimation (e.g. Travel Time): 
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Urban flow 
forecasting

[Zhang et al. 2017]



Urban Spatio-temporal Machine Learning: Models

• Models capture spatio-temporal relations. 
• Spatial relations: 

• Convolutional Neural Nets (CNN): Euclidean, grid data. 
• Convolution and pooling capture relations within a k*k grid. 
• Applications: Region flow forecasting [Zhang et al. 2017]

• Graph Neural Nets (GNN): Non-Euclidean, network data
• Aggregate information from irregular neighbors via edges. 
• Applications: Traffic forecasting [Geng et al. 2019]
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CNN for region flow forecasting 
[Zhang et al. 2017]

GNN for taxi demand forecasting
[Geng et al. 2019]



Urban Spatio-temporal Machine Learning: Models

• Temporal correlations: 
• Recurrent Neural Nets (RNN)

• Inputs share a memory to remember 
previous observations. 

• Hybrid Models
• Jointly model spatio-temporal correlations. 
• Combine RNN with CNN/GNN. 
• e.g. DCRNN [Li et al. 2018] for traffic forecasting

ConvLSTM [Shi et al. 2015] for precipitation. 
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DCRNN [Li et al. 2018]

ConvLSTM [Shi et al. 2015]
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Transfer learning

• Definitions [Pan et al. 2009]: 
• Domain:

Feature space and feature distribution. 
• Task:

Label space and label conditional distribution. 

• Transfer learning: Improve learning on               using knowledge from
or                

• Key Challenge: Identify domain-invariant knowledge. 
• Categorization: 

• Homogeneous:          
• Heterogeneous: 
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Transfer learning: Methods

• Transfer learning methods: ”What to transfer”
• Instance-based: Reuse source instances to train on the target domain. 
• Feature-based: Learn domain-invariant features for both domains and learn a 

common downstream model. 
• Model-based: Encode knowledge in model parameters and reuse parameters for 

the target domain. 
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Transfer learning: Instance-based
• Assumption: Some samples from source are similar to target. 

• Key Challenge: Assign weights to source samples to train target model. 

• Representative Method: TrAdaBoost [Dai et al. 2007]. 

• Intuition: 

• Wrong target samples: Increase weight

• Wrong source samples: Decrease weight (Likely dissimilar from target). 

• Method: 

• Source and target samples: 

Sample weights

• Iterative Reweighting; 
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Source

Target



Transfer learning: Feature-based

• Assumption: Domains share common latent factors. 
• Challenge: Measure & minimize domain distance to identify common factors. 
• Methods: Minimize Maximum Mean Discrepancy [Borgwardt et al. 2006]

• E.g. Transfer Component Analysis (TCA) [Pan et al. 2010]
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Reformulation 
of MMD2



Transfer learning: Feature-based (Cont)
• Methods: Minimize MMD

• E.g. DDC [Tzeng et al. 2014]
• Apply MMD regularization on the output features 
• Jointly minimize classification loss and MMD. 

• Methods: Adversarial learning
• Intuition: Domain invariant features should be 

1. Discriminative w.r.t. labels
2. Indiscriminative w.r.t. source VS target domain

• DANN [Ganin et al. 2016]
• Feature Extractor !, Classifier ", Domain classifier #. 
• Minimize label loss $% !, " : Intuition 1
• Maximize domain loss $'(!, #): Intuition 2
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Transfer learning: Model-based
• Assumption: Model parameters encode general data structures. 
• Key Challenge: Find transferrable parameters. 
• Methods: 

• Train transferrable parameters with regularization
• e.g. MT-SVM [Evgeniou and Pontil, 2004]

• Identify transferrable parameters from well-trained models
• [Yosinski et al. 2014]: Initialize from well-trained models 

improve generalization. 
• Fine-tuning: common in deep learning

• CV: ImageNet pre-training. 
NLP: BERT [Devlin et al. 2019], GPT-3 [Brown et al. 2020] …
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Urban Spatio-temporal Transfer Learning
• When to apply, what to transfer in urban STTL? 

• Planning for new cities. 
• Transfer from existing cities: spatial STTL. 

• Planning for new urban services. 
• Transfer from existing urban services: cross-modal STTL. 

• Data evolution. 
• Adapt previous knowledge to the present: temporal STTL. 
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Development in Greater Bay Area: 
Spatial STTL

Constructing a new MTR line: 
Cross-modal STTL

Adaptation to COVID-19: Temporal STTL
[ICAO, 2020]



Urban Spatio-temporal Transfer Learning
• Key Challenges: 

• Follows from urban STML & transfer learning. 
• Common spatio-temporal patterns
• Common multi-modal knowledge

2021/8/30 24



Spatial STTL

• Formulation: 
• Target: city with limited data
• Source: city with abundant data of the same type
• Homogeneous TL: 

• Differences in urban layout, etc. 

• Coarse VS Fine-grained methods: 
• Coarse-grained methods: Treat each city as a whole and apply transfer learning

• Fine-grained methods: Divide cities as small regions. Find similar region pairs and 
transfer between them. 
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Spatial STTL: Coarse-grained
• Feature-based: Extract features and project into common space. 

• Commonly multi-modal features: POI, land usage, transportation, etc. 
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CoFA [Liu et al. 2018a]
• Problem: Inferring dockless bike distribution
• Transfer method: Factor Analysis, 

• Project original features into a unified feature 
space by minimizing reconstruction error. 

[Pang et al. 2020] and [He et al. 2020]
• Problem: Inferring human mobility in new cities
• Transfer method: TCA [Pan et al. 2010]



Spatial STTL: Coarse-grained (Cont)
• Model-based methods: Train a model on source, re-use on target. 

• Two parts of models: general VS city-specific. 
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PR-UIDT [Ding et al. 2019]
• Problem: Cross-city, cross-user POI 

recommendation
• Transfer method: Regularization

• Split both user and POI embeddings into 
general and non-local parts. 

• Regularize on the non-local part. 

Matrix 
Factorization Loss

Regularization on 
non-local part



Spatial STTL: Fine-grained
• Transfer may lead to higher error than non-transfer: 

• Negative Transfer: when domains differ a lot. 

• e.g. DC à NYC. 
DC is far less populated than NYC. 

• Solution: Fine-grained methods 
• Idea: Cities may be dissimilar, but they must have similar parts (e.g. residential areas, 

business areas). These parts share common knowledge. 
• Methodology: Divide-and-match

• Divide cities into smaller regions. 
• Obtain similar region pairs. 
• Transfer between similar regions instead of whole cities. 
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[Wang et al. 2019b]



Spatial STTL: Fine-grained
• Option 1: Using fixed similarity of 

raw features !",!$.
• Compute region-wise similarity %&',&( . 
• Minimize domain distance for matched regions
Δ = { ,$, ," , ∀,$}, 
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CityTransfer [Guo et al. 2018]
• Problem: Cross-city site recommendation

• Similarity Measure: Pearson correlation
• Train autoencoder / to minimize

and use /(!"), /(!$) for recommendation. 

RegionTrans [Wang et al. 2019b]
• Problem: Spatio-temporal forecasting

• Similarity Measure: Cosine similarity
• Pre-train CNN-LSTM /2(/3 4 ) on source. 
• Fine-tune /2(/3 4 ) on target: 

Target label Matched domain 
distance



Spatial STTL: Fine-grained (Cont)
• Option 2: Using trainable similarity of output features. 
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MetaST [Yao et al. 2019]
• Problem: Spatio-temporal forecasting. 
• Methods: Transfer attention values

• Cluster source regions using k-means
• Set memory ! ∈ ℝ$×& for each cluster. 
• For source region '(, use output ℎ+,,$, to query !, 

get weights -+,,$,.Match -+,,$, with its cluster id. 
• Use attention output /+,,$, as complement features 

for target regions. 

WANT [Liu et al. 2019]
• Problem: Cross-city site recommendation
• Methods: Transferability re-weighting. 

• Architecture: DANN [Ganin et al. 2016]
• Weight each source sample with target via: 

• Domain similarity: According to 0. 
• Data quality: According to 1, 2 . 

• Minimize weighted DANN loss: 



Spatial STTL: Fine-grained (Cont)
• Summary of fine-grained methods

• Raw feature matching: 
• Pro: Stable. Incorporates multi-modal information. 
• Con: Performance relies on quality of features. 

• Output feature matching; 
• Pro: Flexible, trainable matching. 
• Con: Limited target data à overfit. 
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Related Work Task Matching Data Matching Metric Trainable 
Matching

[Wang et al. 2019b] Spatio-temporal
Forecasting

Raw features Cosine Similarity No

[Yao et al. 2019] Output features Implicitly via Attention Yes

[Guo et al. 2018] Cross-city site 
recommendation

Raw features Pearson correlation No

[Liu et al. 2021] Output features Implicitly via domain 
and label classifier

Yes

[Wang et al. 2019b]
Check-in (auxiliary) 

is related
to crowd flow

(limited). 



Temporal STTL
• Temporal STTL tackles data distribution shifts. 

• Two kinds of distribution shifts

• Formulation: 
• Homogeneous TL
• Source: Previous periods
• Target: Current period

• Related Concept: Continual learning [Chen and Liu, 2018].  
• A series of domains and tasks
• For each !, learn task      with knowledge from                . 
• In temporal STTL, each timestamp defines a task. 
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Sudden changes, e.g.
holiday [Zhang et al. 2017]

Long-term (monthly) changes 
[Karacasu et al. 2011]



Temporal STTL for Indoor Localization
• Indoor localization:
• Temporal TL for indoor localization: 

• Goal: At !", adapt $% to $" using
• The first & labeled data are from fixed positions: Reference points. 

• Feature-based method: LeManCoR [Pan et al. 2007]
• Localization with extended Manifold Co-Regularization
• Assumption: Models from different times agree on reference points.
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|$|( : Complexity regularization
|$|) : Manifold regularization



Temporal STTL for Indoor Localization (Cont)
• Model-based method: TrHMM [Zheng et al. 2008]

• Transferring Hidden Markov Models: (", $, %, &, ')
• ", $: Location & observation space
• % = * + , = - ., Σ , , ∈ ", + ∈ $
• &: Transition matrix between locations ". ': Initial distribution over "

• Assumption: Fixed relations between reference (r) and other points (k) across 1. 
• Method: 

1. Estimate %2 at time 12. 
2. Obtain relations between reference and other points via regression.  

3. At time 1, re-use the regression model to reconstruct data, and fine-tune %3
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Cross-modal STTL

• Two scenarios of cross-modal STTL:
• Missing feature modality:

• e.g. Predict air quality using road maps, POI, weather, and transport data
transport data is missing in a city.  

• Solution: Learn the relation between existing modalities and the missing one. 

• Heterogeneous TL: 

• Missing label modality: 

• e.g. Detect ride-sharing car trajectories with no labeled trajectories. 

• Solution: Find related data (e.g. taxis), and link source labels with target ones. 

• Heterogeneous TL: 
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Cross-modal STTL: Missing feature modality
• FLORAL [Wei et al. 2016a]

• Assumption: Relations between modalities
are invariant across domains. 

• Key Idea: Extract and transfer such relations
• Methods: 

• Relation encoding: Build sample-modality graph
Nodes: Each sample in each modality
Intra-modality edges: feature distance
Inter-modality edges: sample proximity

• Relation learning: Cluster sample-modality graph. 
Each cluster forms base vectors in dictionaries. 

• Transfer: Share dictionaries across domains 
Sparse coding to obtain domain-invariant features. 
Multi-modal TrAdaBoost to reweight modalities. 
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Cross-modal STTL: Missing label modality

• CoHTL [Wei et al. 2016b]
• Target: sensor data with few labels. Source: Social messages
• Key Idea: Link samples & labels from social messages to sensors. 
• Methods:  

• Label linking: Topic model & word embedding. 
• Sample linking: Spatio-temporal proximity. 
• Feature-based transfer: Link regularization. 
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Results of label 
linking by word 
embeddings. 

Example of 
spatio-temporal 
sample linking

Reconstruction 
error

Regularization by sample 
links (!"#). 



Summary of urban STTL

• Spatial: Homogeneous TL
• Coarse VS Fine-grained methods: 

transfer between similar parts

• Temporal: Homogeneous TL, 
• Example: Temporal STTL for indoor

localization (via reference points)

• Cross-modal: Heterogeneous TL
• Cases: Missing feature/label modality
• Key: Relations between modalities. 
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Conclusion
• Motivation: Urban computing + machine learning meets lack of data. 
• Challenge: Common ST patterns & Common multi-modal knowledge
• Categorization: Spatial, temporal and cross-modal
• Future directions: 

• Transfer learning with effective multi-modal fusion:  
• Existing works mainly use feature concat or feature similarity. 

• Transfer learning with dynamics: 
• Temporal STTL with detection of data shifts.
• Adaptive knowledge transfer at different periods. 

• Transfer learning with privacy
• Spatio-temporal data may contain user privacy. 
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