
MDP: Model Decomposition and Parallelization of
Vision Transformer for Distributed Edge Inference

Weiyan Wang1, Yiming Zhang2, Yilun Jin1, Han Tian1, Li Chen3
1Hong Kong University of Science and Technology, 2 Xiamen University, 3 Zhongguancun Lab.

wwangbc@connect.ust.hk, sdiris@gmail.com, {yilun.jin,htianab}@connect.ust.hk, crischenli@gmail.com

Abstract—Distributed edge inference emerges to be a promis-
ing paradigm to speed up inference. Previous works make phys-
ical partitions on CNNs to realize it, but there are the following
challenges for vision transformers: (1) high communication costs
for the large model; (2) stragglers because of heterogeneous
devices; (3) time-out exceptions due to unstable edge devices.

Therefore, we propose a novel Model Decomposition and
Parallelization(MDP) for large vision transformers. Inspired by
the implicit boosting ensemble in the vision transformer, MDP
decomposes it into an explicit boosting ensemble of different
and parallel sub-models. It sequentially trains all sub-models
to gradually reduce the residual errors. To minimize dependency
and communication among sub-models, We adopt stacking dis-
tillation to bring every sub-model extra information about others
for better error correction. Different sub-models can take both
different image sizes and model sizes to run on heterogeneous
devices and improve the ensemble diversities. To handle the time-
out exception, we add vanilla supervised learning on every sub-
model for the bagging ensemble in case of the early termination of
boosting ensemble. As a result, all sub-models can not only run in
parallel without much communication but also can be adapted to
the heterogeneous devices, while maintaining accuracy even with
time-out exceptions. Experiments show that MDP can outperform
other baselines by 5.2× ∼ 2.1× in latency and 5.1× ∼ 1.7× in
throughput with comparable accuracy.

Index Terms—Distributed edge inference, vision transformers,
boosting ensemble,

I. INTRODUCTION

Recently, the distributed edge inference emerges to be a

promising paradigm to speed up inference with multiple edge

devices [1], [2], [3], [4], especially in remote scenarios like

security surveillance in the ocean liner, fire detection in the

primary forest, and animal tracking in the wild desert. There

are two reasons for its rising [5], [6]. One is that inference

tasks prefer directly running on the edge due to the high

transferring overhead or unavailability of the Internet. The

other is that there are massive local edge devices(e.g., IoT

sensors and embedded controllers) to offer abundant compu-

tation resources. Some previous works [1], [2], [3], [4] have

explored the proper physical partition on traditional CNNs so

that inference can efficiently run on multiple heterogeneous

edge devices connected to the local network(§II-B2).

Inspired by their success in Natural Language Processing

(NLP), large transformer models like ViT [7] and MAE [8]

have been widely adopted by Computer Vision (CV) (§II-A).

After being pre-trained on massive images, vision transformers

can be further fine-tuned on the down-streaming tasks for

superior accuracy compared to traditional CNNs [7], [8].

������ ���	
�������

��������

���

��

��������

���

��������

���

�

	���

�	�	

�
 ��������
�

����
���� ������
��

������ �	��!�����

����
���� ������
��

�������"

���

Figure 1: MDP decomposes the vision transformer into a

group of sub-models: (1) decoupled and parallel sub-models

without much dependency and communication; (2) different

sub-models can have different image sizes and layer numbers

for heterogeneous devices.

Despite the high accuracy, the vision transformer has high

inference latency on the edge device. Compared with tradi-

tional CNNs, vision transformer consumes higher computation

and larger storage than convolutions due to the complex self-

attention mechanism. Unlike local and spatial convolutions,

self-attention has a global dependency on the entire image.

And all attention layers keep the same large feature size

of the original image and high hidden dimensions like 768.

Some works have explored to reduce its inference cost,

including quantization [9], [10], knowledge distillation [11],

[12], model pruning [13], [14], and patch slimming [15]. But

they all only generate a single model for one edge device,

which cannot save over 50% inference latency to maintain

the accuracy(§II-B1). Moreover, because all these models

compressed from the same original model have low diversities,

their direct bagging ensemble has limited improvement.

Furthermore, it has the following problems with directly

applying physical partitions on the vision transformer for

efficient distributed edge inference:

• High communication cost: Although local networks like

LAN or Wi-fi are faster than the Internet, it is much slower

than the data center network. Therefore, the vision trans-

former has a high overhead to transfer its large intermediate

results.

• Straggler problem: The edge devices inherently have

heterogeneities in computation and storage. But attention

570

2023 19th International Conference on Mobility, Sensing and Networking (MSN)

979-8-3503-5826-1/23/$31.00 ©2023 IEEE
DOI 10.1109/MSN60784.2023.00086

layers are hard to be properly partitioned due to their global

dependency, resulting in straggler problems.

• Time-out exception: Unlike stable servers in the data cen-

ter, edge devices are not exclusive and are always available

for distributed edge inference. This time-out problem is

ignored by all previous works.

To this end, we propose the novel Model Decomposition and

Parallelization(MDP) of the vision transformer for efficient

distributed edge inference. Inspired by the implicit boosting

ensemble in the vision transformer (§II-A), MDP decom-

poses the original model into an explicit boosting ensemble

of different sub-models running in parallel, instead of the

physical model partition(§IV). To achieve this, all sub-models

are sequentially trained to gradually reduces the error between

the ground truth and the existing sub-models as more sub-

models added. To minimize dependency and communication

among sub-models, we bring up the virtual stacking that every

sub-model distills all previous sub-models into its intermediate

layers. Similar to the stacked attention layers in the vision

transformer, every sub-model can better reduce the error by

estimating the output of all the previous sub-models. There-

fore, all sub-models can work together to maintain accuracy

with little dependency and communication during inference.

Additionally, all sub-models can have not only various

image sizes but also different model sizes to run on hetero-

geneous edge devices. We feed all sub-models with different

scales of images to adjust the workloads among devices and

build up the feature pyramid. Moreover, we prune all sub-

models to have different layer numbers for different devices,

which can also improve ensemble diversities from the different

network architectures of all sub-models.

Finally, we also employ the extra bagging ensemble to

handle the time-out exception (§V-B). In boosting ensemble,

if the m-th sub-model fails to return the output in time,

all its following sub-models cannot participate the boosting

ensemble. Therefore, we add an extra output classifier for

vanilla supervised learning on every sub-model. Then the sub-

models following the failed one can contribute to the bagging

ensemble in case of wasting their computation.

We have implemented a prototype of the proposed MDP

for the vision transformer and conduct comprehensive exper-

iments to verify its efficiency and effectiveness. Experiment

results(§VI) show that it improves the inference latency over

all baselines by 5.2× ∼ 2.1×, outperforms the others by

5.1× ∼ 1.7× in terms of throughput, and achieve almost the

same accuracy as the original vision transformer.

In summary, our work makes the following contributions:

1) We propose MDP to decompose the original vision trans-

former into a group of virtually stacked sub-models to run

in parallel with little communication.

2) We adjust both input image and model sizes in different

sub-models to be better adapted to the heterogeneous

devices, meanwhile improving the ensemble diversity.

3) We handle the time-out exception by extra bagging en-

semble, which is a problem ignored by all previous works.

(a) Image Size (b) Model Size

Figure 2: Different factors influencing the inference latency

II. BACKGROUND AND MOTIVATION

A. Vision Transformer

Transformer models have grown to be the universal model

architecture, because of their unprecedented achievements

in NLP, CV, and multi-modality. By following the learning

paradigm of BERT [16] and GPT [17], vision transformers

like ViT [7] and MAE [8] are firstly pre-trained on large

unlabeled data and then fine-tuned on the small labeled dataset.

Because of their effective pre-training, vision transformers can

significantly outperform previous works like ResNet [18].

Initially, the vision transformer splits one image into mul-

tiple patches as the ”sequence tokens” in CV [7]. All patches

are non-overlapping and in the same size, so the patch number

is determined by the image size. Then it conducts a linear

projection on every patch for the patch embeddings, which

forms the ”token” sequence fed to the attention layers.

To capture global semantic relationships among patches,

every attention layer employs a complex self-attention mech-

anism. It computes the dot-product similarities between all

patch pairs to generate an attention weight matrix, which

has O(N2) time complexities. Every position generates the

new patch feature by aggregating all attention-weighted patch

features. Then it applies a non-linear transformation on the

patch features separately and identically.

All the layers are stacked with residual connections, which

can be interpreted as the implicit boosting ensemble of all

layers [19], [20]. The residual connection adds the original

input of the i − th layer xi back to the result of its layer

function Fi(xi), so its layer output is Hi = Fi(xi) + xi,

namely the refinement of its input. Because there are numerous

attention layers stacked with residual connections. Then the

output of the n-th layer is expanded as Hn = Fn(
∑n−1

i=1 Hi+

x0) +
∑n−1

i=1 Hi + x0. Thus, residual connections enable the

multi-path forward in the vision transformer, which behaves

like the ensemble of relatively shallow networks [19], [20].

Compared with traditional CNNs, the vision transformer has

three main differences. First, self-attention has a global de-

pendency on the entire image, but convolution only computes

local spatial relationships of neighboring pixels. Furthermore,

all attention layers keep the same patch number(i.e., the same

image scale) to be compatible with residual connections. But

there are some poolings or strides inserted into CNNs to sub-

sample the image scale in different layers [18], [21] Finally,

all attention layers also have the same hidden dimensions like

768, different from the increasing convolution channels from

the bottom to the top layers.

571

������ �

������ �

(a) Horizontal

������ � ������ �

(b) Vertical

Figure 3: Different Workload Partitions

Despite the high accuracy, vision transformers have high

computation costs. As CPU inference results in Figure 2, there

are the following two factors affecting the inference latency:

• Image Size: inference latency significantly increases with

the image size(or patch number N) as shown in Figure 2a,

because of O(N2) time complexity in attention mecha-

nism [22].

• Model Size: vision transformer relies on large model depth

L to extract effective semantic features, but it linearly

increases time complexity as O(L) [23] as shown in Fig-

ure 2b.

B. Limitations of Existing Works

There are two categories of previous works about efficient

inference on edge devices. One is the model compression of

vision transformers for the single edge device. The other is

workload physical partition for distributed edge inference.

1) Model Compression for the Edge Device: Some existing

works have explored compressing the large vision transformer

to run on the edge device, but they all overlook the possibility

of exploiting multiple edge devices for distributed inference.

These works only focus on generating the single small model

equivalent to the large one, which also has limited room to be

further compressed for less computation costs.

There are various works for the model compression of vision

transformers. Quantization [9] studies how to replace expen-

sive float parameters with cheap low-bit quantized parameters,

but it cannot reduce the time and space complexities. Knowl-

edge distillation [11] trains the small student model to mimic

the behavior of the teacher vision transformer, which needs a

large enough student model. Model pruning [13] recognizes

and prunes redundant weights, neurons, and attention heads

to save computation costs, but most model parts still remain

to maintain accuracy, and the sparsely remained model is not

friendly to efficient hardware execution. Patch slimming [15]

employs extra modules to recognize and discard the redundant

patches in every layer, but it has extra computations and the

initial patch number is fixed.

2) Physical Partition for Distributed Edge Inference: Pre-

vious works make physical partitions on CNNs to distribute

proper workloads across different edge devices. Although

every edge device has limited resources, multiple edge devices

(a) Local dependency (b) Global dependency

Figure 4: Dependency Comparison between the convolution

layer(a) and the fully-connected layer(b)

can cooperate to speed up the model inference. As shown in

Figure 3, there are two kinds of model partitions, including

horizontal partition and vertical partition.

Horizontal partition borrows the idea of naive model paral-

lelism [24], [25] in the distributed training. It splits the deep

model into different layer parts to run on different devices.

As illustrated in Figure 3a, the input data first run through

the bottom layers on device A, and then the intermediate

features will be transferred to device B for the following

layer computation. If intermediate features are large, the

communication costs can be high. Additionally, the inference

on the single sample is sequentially executed in a pipeline on

multiple devices. Therefore, the horizontal partition can not

improve the inference latency for individual samples, and it

needs enough data to fulfill the pipeline.

As shown in Figure 3b, the vertical partition explores

parallel computation within the layer for distributed edge

inference. Some works [26], [27], [2] observe and exploit the

local dependency on the input of some layers. For example,

the convolution layer assumes that CV data have local spatial

correlations, so it only takes a small convolution window(e.g.,

3x3) sliding over the entire image. As shown in Figure 4a,

every output value only depends on the neighboring input

values in the window, instead of all inputs. Similarly, there

are some other locally dependent layers, such as pooling,

batch normalization, and element-wise activations like RELU.

Therefore, these works [26], [27], [2] split the input features

maps into multiple tiles to be processed in parallel among

different edge devices. However, the partition on input features

is not feasible for the vision transformer, because of its global

dependency on the entire image.

For the global dependent layers like fully-connected and

attention layers, tensor parallelism [28], [29] can partition the

layer itself into different parallel parts to generate different

outputs as shown in Figure 4b. For example, the weight matrix

of fully-connected layers can be split into multiple chunks

and the attention layer inherently has multiple parallel heads.

Since every device only has partial results, it needs extra all-

gather communications to concatenate the whole results for

the following layer. In the distributed training on servers, the

tensor parallelism usually happens only among the GPUs in

the same node to take advantage of the fast PCI-E transferring.

However, the distributed edge inference only has the local

network much slower than the PCI-E and data center network.

572

������� �	
����� �
�� ������ ����	���� �
��

��	�
��������������

	
�������
����
���������

����
�� ���
����

�����
�

�
��
����
�

������ ��

	
������ �

����������

������ ���������

�	����

�	��

������ ��

	
������ �

������ ��

	
������ �

������ ��

	
������ �

	
�����	�� ��������

Figure 5: Overview of the two phases in MDP : (1) offline training phase: sequentially training different sub-models with

boosting ensemble loss, virtual stacking loss, and auxiliary supervised learning loss ; (2) online inference phase: one device

works as the master to coordinate the distributed inference, while all devices execute different sub-models respectively.

III. FRAMEWORK OVERVIEW

As the overview shown in Figure 5, MDP have two different

phases, namely offline training and online inference. The

offline training is the first phase that generates different sub-

models(§IV). And the second one is online inference(§V),

which exploits multiple edge devices for the distributed in-

ference of different sub-models. Specifically, the two different

phases play the following roles:

• Offline Training: It sequentially trains all sub-models in

explicit boosting ensemble to gradually reduce the error.

To reduce the dependency and communication during the

inference, MDP employs virtual stacking to bring in ex-

tra information about previous sub-models. Additionally,

different sub-models can have different input and model

sizes to run on heterogeneous devices, which also improves

ensemble diversities. It also employs supervised learning as

the auxiliary task to handle time-out exceptions.

• Online Inference: Unlike training requiring the outputs of

previous sub-models as the labels, all sub-models are free

of labels to run in parallel during the inference. MDP dis-

tributed inference data across different devices, and all sub-

models are combined for the final output. It also considers

how to handle some unexpected time-out events for the

distributed edge inference, in case any sub-model output

is missing.

IV. OFFLINE TRAINING

In this section, we first introduce the overall workflow of

offline training in MDP . Then, we describe the all training loss

terms. Finally, we show how different sub-models are adapted

to heterogeneous edge devices.

A. Overall Workflow

At its heart, MDP decomposes the large vision transformer

into an equivalent group of different and parallel sub-models

for future distributed edge inference. The process of how

MDP generates the group of sub-models is described in the

Algorithm 1. And there are the following key steps:

1) Device profiling (line: 2): In the initialization, MDP firstly

profile the capabilities of local heterogeneous edge devices.

Then it can assign different sub-models to different edge

devices for suitable computation and storage costs.

2) Image pre-processing (line: 10): According to the hetero-

geneous capabilities, different sub-models can take images

resized into different scales as their inputs. Meanwhile,

MDP can build the feature pyramid of multiple scales [21]

from all sub-models for better prediction. Moreover, it ap-

plies Mix-up [30] on training data as the data augmentation.

And it sub-samples the whole datasets to get the subsets of

samples having large gradient residuals.

3) Dynamic layer pruning (line: 13-18 and 20): Besides the

image size, MDP can further adapt the model size to the

edge devices by dynamic layer pruning. During the training

of every data batch, it dynamically skips some layers with

every-other strategy [23]. After completing training one sub-

model, it can prune the model layers for better adaptation

to the assigned device.

4) Boosting ensemble (line: 14): All sub-models are sequen-

tially trained to work together in the form of boosting

ensemble. Every sub-model is trained to reduce the error

between ground truth and all previous sub-models. As a

result, MDP can gradually improve the accuracy as new

sub-models are added.

5) Virtual stacking (line: 15): To eliminate dependency and

reduce communication, we bring in the novel virtual stack-

ing loss to train sub-models. The virtual stacking distillates

all the previous sub-models into the intermediate layer of the

current one. Therefore, every sub-model is free of physical

dependency on others, but it reserves the others’ information

within itself for better error correction.

6) Supervised learning (line: 16): All sub-models are also

trained on the ground truth labels with vanilla the supervised

learning loss. Therefore, if the output of any sub-model is

missing, the following sub-models can also contribute to the

bagging ensemble (§ V-B).

B. Sub-Model Training Loss

To gradually reduce the error, MDP continue to add a new
sub-model until it is overfitting or exceeds the device number.
Every newly added sub-model is trained to further reduce the
residual error between the ground truth and all previous sub-
models. Except that the first sub-model directly trains on the
ground truth, other sub-models learn to correct the error of
their previous sub-models. Formally, the final output loss of

573

Algorithm 1 the Process of MDP

Require: pretrainVT, devices
1: #Profiling all device capabilities
2: imgSizes = deviceProfiling(devices)
3: #Sequential training of all sub-models
4: subModels = []
5: while not overfitting or len(subModels) < deviceNum do
6: newSubmodel = PretrainVT()
7: #Training of current sub-model
8: while training do
9: #Image Pre-procossing

10: x, y = mixup(x, y, imgSizes[i])
11: outputs = newSubmodel(x)
12: # Dynamical layer dropping
13: for layerGap ← 12 to 2 do
14: Compute the boosting loss as Eqn 1
15: Compute the virtual stacking loss as Eqn 2
16: Compute the supervised learning loss as Eqn 3
17: Accumulate the gradients of current layers
18: end for
19: Update newSubmodel with all the gradients
20: end while
21: # Adaptive layer pruning for current sub-model
22: Prune newSubmodel for the proper layer number
23: subModels.append(newSubmodel)
24: end while

the i-th sub-model L
(i)
1 is defined as:

L
(i)
1 (x) =

⎧⎪⎪⎨
⎪⎪⎩

SCE(S(i)(x), y), i = 0

SCE(S(0)(x) +
i∑

j=1

αjS
(j)(x), y) i > 0.

(1)

In the equation, SCE stands for the soft target cross-entropy

loss function. The y is the ground-truth label of data x,

which is from mix-up data augmentation. S(i)(x) denotes

the final output of the i-th sub-model. αj is the shrink-

age rate for the gradient boosting, which is also trainable.

S(0)(x) +
∑i

j=1 αjS
(j)(x) is the boosting ensemble of the

previous i models. Only S(i) and αi is trainable, while the

other models S(j<i) and αj<i are fixed.

For efficient distributed edge inference, it prefers all sub-

models to be decoupled from each other to run independently

without dependency and communications. However, the orig-

inal vision transformer sequentially stacks attention blocks to

continuously refine the feature for better prediction. Similarly,

we bring in the novel virtual stacking for the parallel sub-

models, which reserves the information of other sub-models

in the boosting ensemble.

Specifically, every sub-model distills all the previous sub-

models into its intermediate layer to realize the virtual stacking

of sub-models. Except for the first one, every sub-model adds

another classifier on its intermediate layer in the half depth,

so it can distill the ensemble of all previous sub-models into

its bottom parts. The training loss L
(i)
1 of virtual stacking for

the i-th sub-model is shown in the following equation:

L
(i)
2 (x) = SCE(M (i)(x), S(0)(x) +

i−1∑

j=1

αjS
(j)(x)) (2)

where M (i)(x) denotes the output of the additional classifier

applied on the middle layer in the i-th sub-model. And only

M (i) is trainable in L
(i)
2 , while all the previous sub-models

S(j)(x) are fixed.

Furthermore, all sub-models are also trained to make direct

predictions independently. This training loss is mainly used

to handle unexpected sub-model time-out during inference.

Additionally, it also works as multitask learning to improve

the representation learning for the boosting ensemble,

L
(i)
3 (x) = SCE(S(i)

sup(x), y) (3)

Therefore, the overall training loss L for the i-th sub-model

can be written as follows:

L = L1 + λ1L2 + λ2L3 (4)

where λ1 and λ2 are the hyper-parameters to balance layer

distillation and final residual error correction. And the total

sub-model number is the total number of edge devices.

C. Sub-Model Adaptation to Heterogeneity

To be adapted to heterogeneous edge devices, all sub-

models are designed to have different input sizes and model

sizes. MDP employs a greedy strategy to assign the smaller

model to process smaller images on weak devices, while

powerful devices have a larger model to handle larger images.

Therefore, different edge devices can have suitable workloads

to reduce the straggler problem caused by heterogeneity.

Specifically, MDP first profiles and sorts out the capabilities

of all edge devices. We set the smallest size as 64 × 64, the

original image size as 256×256, and the increasing step size as

same as patch size 16×16. Then we start with on the weakest

device and make the image size as 64× 64 for its sub-model,

which is split into 16 × 16 non-overlapping patches. Then if

given a device that has r times larger computation capability

than the weakest one, we choose the not used size s that makes

s2/642 the closest one to r for the device. Besides adjusting

the workload to different edge devices, the various sizes of

images can also explicitly build up the feature pyramid of

different scales for better prediction.

Since image size cannot perfectly fit the device performance

differences, all sub-models can dynamically skip some layers

to further adjust the workload. For example, if we have two

same devices, one can have smaller images but more layers,

while the other has larger images but fewer layers. When

training one data batch, we dynamically drop different rates

of layers by following the every-other strategy [23]. In other

words, if the pruning rate is p, it drops the layer at the

depth d such that d mod � 1
p� = 0. Following previous NAS

works [31], MDP updates the model parameters with all accu-

mulated gradients of different pruning rates, so the sub-model

is robust to different layer numbers. After finishing training

one sub-model, it will choose the layer number improving the

most accuracy but not having longer latency than any previous

one. It can further fine-tune the pruned sub-model to improve

574

accuracy. And sub-models with different layer numbers can

improve the diversity of the final ensemble.

If the device number is larger than the sub-model number,

we can replicate or build multiple sub-model groups to run

concurrently on different devices for different samples.

D. Training Cost Discussion

Compared with other model compression, MDP only has

about 1.5x training time to train all sub-models. We use pre-

trained models to initialize our sub-models. Their training data

is also the sub-set of the target dataset, which has smaller

image sizes. MDP can also use the powerful servers to conduct

distributed training for less time costs. Furthermore, the train-

ing cost can be amortized during the long-term deployment.

V. ONLINE INFERENCE

In this section, we first introduce the detailed inference

procedure. Then we discuss how we make the final prediction

from the outputs of all sub-models, and we will introduce how

we can handle the time-out exception.

A. Online Inference Procedure

In general, MDP employs the master-worker architecture

for the distributed edge inference. The master is the gate

and coordinator for the distributed inference, which co-locates

with the largest sub-model on the most powerful device. All

available edge devices play the role of workers to execute

different sub-models in parallel. And the master and all

workers are connected to the local network like LAN or Wi-Fi.

Specifically, MDP has the following procedures:

1) The camera or user sends the inference data to the master.

2) The master first resizes the image into workers’ sizes and

then dispatches the resized images to different workers

respectively. And it can overlap the resizing computation

and data transferring to save time cost.

3) All workers receive the image data and conduct the infer-

ence in parallel.

4) The master gathers the outputs from all workers, including

the output for boosting ensemble and vanilla supervised

learning output.

5) The master sum up the outputs of all workers and return

the final prediction to the user.

B. Final Prediction of Sub-model Ensemble

All sub-models are trained in boosting ensemble, so all sub-

models can predict by summing up their weighted outputs. If

we have n sub-models, the prediction of boosting ensemble is

S(0)(x) +
∑N

j=1 αjS
(j)(x). Additionally, all sub-models also

make independent predictions. Therefore, we can exploit the

bagging ensemble of their independent predictions and the

boosting ensemble to enhance the prediction as follows:

B(x) =
1

n+ 1
(S(0)(x) +

N∑

j=1

αjS
(j)(x) +

N∑

j=1

S(j)
sup(x)) (5)

Unlike stable servers, there is no guarantee that all edge

devices are always exclusive or available for distributed in-

ference. Occasionally, any edge device can be occupied by

other tasks. The network bandwidth can be also shared by

some other background flows. It can be even unexpectedly

turned off due to the exhausted battery. Therefore, time-out

exceptions can happen on any edge device. If the outputs of

the m − th sub-model do not arrive in time, MDP can still

make the final prediction as follows:

B(x) =
1

n
(S(0)(x) +

m∑

j=1

αjS
(j)(x) +

∑

j �=m

S(j)
sup(x)) (6)

In this equation, we only conduct boosting ensemble of the

sub-models before the missing one. To improve the accuracy

and avoid the wasting of sub-models after the m-th, we

add independent prediction of all the others in the bagging

ensemble as written in the last term.

VI. EVALUATION

In this section, we report the evaluation results of our MDP

to verify its efficiency and effectiveness. We first describe the

experiment settings. Then, we show our MDP can outperform

others in terms of latency and throughput while maintaining

accuracy. Finally, we make some deep-diving experiments.

A. Experiment Settings

1) Implementation: We implement the MDP with about 2k

lines of Python code. Specifically, we use the PyTorch [32]

as our DL framework, timm from HuggingFace [33] for the

vision transformer implementations, and gloo [34] for commu-

nications among devices. And we set the minimum image size

as 64× 64, the original image size as 256× 256, and conduct

grid searching for both the λ1 and λ2 during validation. We

initialize our model with the pre-trained MAE [8] and keep all

other hyperparameters the same as it, including fixed 16× 16
patch size, learning rate schedule, batch size, and so on.

2) Test-bed: Following the previous work [2], [3], [4], we

deploy MDP on 4 embedded devices with ARM CPUs @ 2.8

GHz. If the number of available edge devices is larger than

the sub-model number, we can simply replicate the sub-model

group to run on different devices for different inference sam-

ples. All edge devices have PyTorch built from the source for

ARM, but they have different hardware configurations. Their

CPU core numbers are one, two, three, and four respectively.

And their host memory sizes are 2 GB, 4 GB, 8 GB, and 16

GB respectively. All the devices are connected by the LAN

with up to 1 Gbps bandwidth.

3) Dataset: We use the famous ImageNet [35] and Indoor

Scene Recognition [36] as the datasets for evaluation. There

are 1000 image categories in ImageNet, and its total number

of images is about 14 million. Indoor Scene Recognition has

15620 images in 67 categories, and there are at least 100

images for each category. We follow the official way to split

the datasets for training and testing. We set the top-5 accuracy

and top-1 accuracy as the accuracy metrics for ImageNet and

Indoor Scene Recognition respectively. Additionally, we set

575

(a) Latency (b) Throughput

Figure 6: Average latency(the lower is better) and through-

put(the higher is better) measurements and comparisons

the target accuracy for the model compression methods as a

95% accuracy score of the original model.

4) Baselines: We consider the following three baselines

further fine-tuned on ImageNet for classification to compare

with our proposed MDP : (1) Original Vision Transformer
(OVT): we run the MAE pre-trained version of the vision

transformer on the most powerful device; (2) Pruned Vision
Transformer (PVT): we run the smallest pruned vision trans-

former that satisfies the target accuracy, namely 95% of the

original model; (3) Horizontal Model Partition (HMP): we

run the original vision transformer on all edge devices by split-

ting among layers for model parallelism; (4) Vertical Model
Partition (VMP): we run the original vision transformer on all

edge devices by splitting within layers for tensor parallelism.

B. End-to-End Performance

1) Inference Latency: As shown in Figure 6a, our MDP

outperforms all other baselines by 5.2× ∼ 2.1×. MDP can

leverage all edge devices to run different sub-models in parallel

with the limited communication to scatter the image data and

reduce the final outputs. And all sub-models can be adapted to

the heterogeneous capabilities of different edge devices with

smaller image and model sizes. However, OVT and PVT can

only run on the most powerful edge device. And PVT can

only reduce about 50% costs of the original one. Both HMP

and VMP make physical partitions on the inference workloads

for the distributed edge inference. But the HMP executes

sequentially on different devices, which cannot improve the

latency of individual samples. And VMP suffers from the

communication problem due to the global dependency and

large feature size of vision transformers.

2) Inference throughput: Figure 6b shows that our MDP

also have significant advantages over other baselines in the

throughput. MDP can have 5.1× ∼ 1.7× larger throughput

than the others. Except for HMP, all other baselines keep the

same trend in the latency experiment. HMP can better utilize

all edge devices for better throughput by fulfilling the pipeline

with enough inference data. Therefore, it can achieve the best

throughout in all baselines, despite its relatively high latency.

3) Prediction Accuracy: Figure 7 illustrates that our MDP

achieves comparable accuracy with the original vision trans-

Table I: The latency breaking-down for all methods
Method comp. time (ms) comm. time (ms) comm. size (MB)

OVT 180.5 0 0
PVT 124.5 0 0
HMP 281.1 25 3.1
VMP 76.1 226 28.3
Ours 58.5 0.8 0.059

(a) ImageNet(top-5) (b) Indoor(top-1)

Figure 7: Accuracy comparisons (the higher is better)

former in both datasets, and it has considerable advantages

over PVT. It is because virtual stacking can bring in extra

information for better error correction. And supervised learn-

ing works as the auxiliary task for better feature learning

and bagging ensemble. With different image sizes and model

sizes, sub-models can build up feature pyramids and improve

ensemble diversity. And the virtual stacking works as the

regularization to improve the boosting ensemble. Therefore, all

small sub-models can work together to maintain the accuracy

of the large vision transformer. Compared with OVT, the PVT

only generates a single smaller model, so it has a larger

accuracy drop. We omit HMP and VMP for accuracy because

the physical partition has the same accuracy as OVT.

C. Deep-diving Experiments

1) Latency Breaking-down: Table I shows the latency

breakdown for all the methods. Our MDP has the smallest

communication cost in the distributed inference methods,

thanks to the small size of image data and final outputs.

VMP has achieved good speed up in the computation, but

its expensive all-gather communications in every layer slow

down the inference. HMP also has considerable device com-

munications at every layer splitting point, and it even improves

the computation time for the individual data because of the

sequential computation on all different devices. Both OVT

and PVT have no communication because of running on

only one device. Compared with MDP ’s sub-models in the

ensemble, the single small model in PVT has limited rooms

to be compressed without more accuracy loss.

2) Ablation Study in Accuracy: To verify the effectiveness

of our designs to maintain accuracy, we conduct the ablation

study shown in Table II. Without layer pruning for shallow

sub-models running on extremely weak devices, MDP can

improve some accuracy because of the deeper and stronger

sub-models. When we keep the same small image size in all

sub-models, it has some accuracy loss because of no feature

pyramid of different scales and fewer ensemble diversities.

Removing the virtual stacking also cause accuracy loss, be-

cause it brings in extra information about the previous sub-

models for better error correction. And if we directly train the

sub-models separately for the bagging ensemble instead of

boosting ensemble, they have less accuracy improvement over

Table II: Ablation Study in Accuracy
ImageNet(top-5) Indoor(top-1)

original MDP 0.951 0.821
w/o layer pruning 0.957 0.824
w/o different image size 0.943 0.817
w/o virtual stacking 0.936 0.811
replace boosting with naive bagging 0.912 0.805
the best sub-model alone 0.889 0.796

576

(a) Time-out (b) Network Bandwidth(Gbs)

Figure 8: (Left): bagging ensemble to handle time-out ex-

ception happens on the N-th sub-model. (Right):Influences of

different network bandwidth

the single model. The reason is all sub-models have small

diversity due to being pruned from the same model in the

same way. And there is a large gap between MDP and the

best stand-alone sub-model because the single sub-model has

limited model capability compared with the OVT and MDP .

3) Extra Bagging Ensemble for Time-out Exception: As

shown in Figure 8a, we make experiments to verify the effec-

tiveness of the extra added bagging ensemble. It illustrates that

the added bagging term always helps get better accuracy, no

matter which sub-model has the time-out exception. Especially

if the first sub-model has a time-out problem, the boosting

ensemble alone cannot even predict. But MDP employs the

bagging ensemble of the following sub-models to avoid the

waste of computations and improves the accuracy a little. Due

to different other training losses, different training subsets and

image sizes, and different layer numbers, our sub-models have

higher diversities than the direct bagging ensemble.

4) Influences of Network Bandwidth: Because LAN can be

shared by many other tasks, we show how different network

bandwidths affect the latency of all distributed inference

methods in Figure 8b. The network bandwidth variation has

the smallest inferences on our MDP , because of the limited

transferring volume. VMP can suffer more from all-gather

communication in every layer. Compared with VMP, HMP is

less affected when only communication in the layer splitting.

VII. RELATED WORK

With the increasing size of deep models, there have been

various works having explored distributed machine learning

for acceleration. It employs multiple devices working in par-

allel to speed up either the training phase or inference phase.

However, the cooperation of different devices brings in extra

communication costs. The related previous works have studied

in how to realize efficient distributed machine learning from

different perspectives in the both following phases:

Training Phase: it usually distributes different data samples

and model parts over different devices to run in parallel. The

data parallelism requires the gradient allreduce among all de-

vices, resulting in expensive global communication during the

synchronization. Generally speaking, there are a wide range of

approaches to improve the efficiency for distributed training,

including but not limited to: 1) reducing the traffic volume in

every iteration by gradient compression [37], [38] and frozen

layers [39]; 2) relaxing the global synchronization require-

ment [40], [41], [42]; 3) overlapping communication over

computation [43]; 4) employing fast RDMA network [44],

[45], [46]; 5) leveraging new programmable devices like smart

switches and FPGAs [47], [48], [49]; 6) optimizing network

transferring by using congestion control [50], [51], [52] and

flow scheduling [53], [54], [55], [56].

Inference Phase Some previous works also explore how

to parallelize the model inference [57], [58] for the efficient

deployment. Initially, previous works study how to compress

the large model into a single small model, including quan-

tization [9], [10], knowledge distillation [11], [12], model

pruning [13], [14], and patch slimming [15]. However, they

ignore the possibility to leverage multiple different devices

for distributed model inference. Then some works attempt

to offload the inference to the powerful remote servers with

GPUs. Model cascade [1], [59], [60], [61] adopts the idea

of conditional computation. They usually first run a small

but weak model in the near-end edge devices. If the model

confidence is low, they run the lager model or image on the

remote powerful servers. However, it leads to not only high

transferring latency over Internet [2], [5], [6] but also raising

privacy concerns [62], [5], [6]. Recently, some other works

explore the distributed inference on multiple local edge devices

in the similar way of model parallelism. Existing distributed

edge inference focuses on making proper physical vertical or

horizontal partitions on the model architecture [26], [27], [2].

VIII. CONCLUSION

We propose the novel MDP to decompose the implicitly

ensembled vision transformer into the explicitly boosting

ensemble of different sub-models for efficient distributed edge

inference. Virtual stacking can physically decouple all sub-

models from each other while reserving information within

themselves to maintain accuracy. With different image sizes

and model sizes, all sub-models can have suitable workloads

for heterogeneous devices and improve the diversity of the

ensemble. We further leverage the bagging ensemble to handle

unexpected time-out sub-models. We have conducted com-

prehensive experiments to verify its advantages in terms of

latency, throughput and accuracy.

ACKNOWLEDGE

This work is supported in part by National Key R&D Pro-

gram of China (2022YFB4500302). We thank Dr. Huangxun

Chen for the helpful discussion and the anonymous reviewers

for their constructive feedback and suggestions.

REFERENCES

[1] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in INFOCOM, 2019.

[2] C. Hu and B. Li, “Distributed inference with deep learning models across
heterogeneous edge devices,” in INFOCOM. IEEE, 2022.

[3] Y. Li, T. Zeng, X. Zhang, J. Duan, and C. Wu, “Tapfinger: Task place-
ment and fine-grained resource allocation for edge machine learning,”
in INFOCOM, 2023.

[4] C. Quan, W. Kaijia, G. Song, C. Zhipeng, and Z. Albert, “Latency-
optimal pyramid-based joint communication and computation scheduling
for distributed edge computing,” in INFOCOM, 2023.

[5] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, 2019.

[6] W. Ren, Y. Qu, C. Dong, Y. Jing, H. Sun, Q. Wu, and S. Guo, “A survey
on collaborative dnn inference for edge intelligence,” arXiv, 2022.

577

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in ICLR, 2021.

[8] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in CVPR, 2022.

[9] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-training
quantization for vision transformer,” NeurIPS, 2021.

[10] Z. Yuan, C. Xue, Y. Chen, Q. Wu, and G. Sun, “Ptq4vit: Post-training
quantization for vision transformers with twin uniform quantization,” in
ECCV, 2022.

[11] Z. Hao, J. Guo, D. Jia, K. Han, Y. Tang, C. Zhang, H. Hu, and Y. Wang,
“Learning efficient vision transformers via fine-grained manifold distil-
lation,” NeurIPS, 2022.

[12] S. Yu, T. Chen, J. Shen, H. Yuan, J. Tan, S. Yang, J. Liu, and Z. Wang,
“Unified visual transformer compression,” arXiv, 2022.

[13] M. Zhu, Y. Tang, and K. Han, “Vision transformer pruning,” arXiv, 2021.
[14] Z. Kong, P. Dong, X. Ma, X. Meng, M. Sun, W. Niu, B. Ren,

M. Qin, H. Tang, and Y. Wang, “Hfsp: A hardware-friendly soft pruning
framework for vision transformers.”

[15] Y. Tang, K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, and D. Tao, “Patch
slimming for efficient vision transformers,” in CVPR, 2022.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv,
2018.

[17] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[19] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave like
ensembles of relatively shallow networks,” NeurIPS, 2016.

[20] F. Huang, J. Ash, J. Langford, and R. Schapire, “Learning deep resnet
blocks sequentially using boosting theory,” in ICML, 2018.

[21] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in CVPR, 2017.

[22] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti,
S. Ontañón, P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed,
“Big bird: Transformers for longer sequences,” in NeurIPS, 2020.

[23] A. Fan, E. Grave, and A. Joulin, “Reducing transformer depth on demand
with structured dropout,” arXiv, 2019.

[24] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,
G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient pipeline
parallel dnn training,” arXiv, 2018.

[25] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” NeurIPS, vol. 32, 2019.

[26] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clus-
ters,” TCAD, 2018.

[27] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge: Cooperative
dnn inference with adaptive workload partitioning over heterogeneous
edge devices,” IEEE/ACM Transactions on Networking, 2020.

[28] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with conditional
computation and automatic sharding,” arXiv, 2020.

[29] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv, 2019.

[30] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in ICLR, 2018.

[31] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv, 2019.

[32] A. D. I. Pytorch, “Pytorch,” 2018.
[33] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,

P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s
transformers: State-of-the-art natural language processing,” arXiv, 2019.

[34] Facebook, “Gloo,” https://github.com/facebookincubator/gloo.
[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in CVPR, 2009.
[36] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in CVPR

2009.
[37] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient

compression: Reducing the communication bandwidth for distributed
training,” in ICLR 2018,.

[38] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
communication-efficient SGD via gradient quantization and encoding,”
in NeurIPS, 2017.

[39] Y. Wang, D. Sun, K. Chen, F. Lai, and M. Chowdhury, “Egeria: Efficient
DNN training with knowledge-guided layer freezing,” in Proceedings of
the Eighteenth European Conference on Computer Systems, EuroSys
2023, Rome, Italy, May 8-12, 2023, 2023.

[40] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, “More effective distributed ML via a stale
synchronous parallel parameter server,” in NeurIPS 2013.

[41] W. Wang, C. Zhang, L. Yang, K. Chen, and K. Tan, “Addressing network
bottlenecks with divide-and-shuffle synchronization for distributed DNN
training,” in IEEE INFOCOM 2022.

[42] X. Wan, K. Xu, X. Liao, Y. Jin, K. Chen, and X. Jin, “Scalable and
efficient full-graph GNN training for large graphs,” Proc. ACM Manag.
Data, 2023.

[43] Y. Ma, H. Wang, Y. Zhang, and K. Chen, “Autobyte: Automatic
configuration for optimal communication scheduling in DNN training,”
in IEEE INFOCOM, 2022.

[44] Z. Wang, L. Luo, Q. Ning, C. Zeng, W. Li, X. Wan, P. Xie, T. Feng,
K. Cheng, X. Geng, T. Wang, W. Ling, K. Huo, P. An, K. Ji, S. Zhang,
B. Xu, R. Feng, T. Ding, K. Chen, and C. Guo, “SRNIC: A scalable
architecture for RDMA nics,” in NSDI 2023.

[45] B. Yi, J. Xia, L. Chen, and K. Chen, “Towards zero copy dataflows
using RDMA,” in Posters and Demos, SIGCOMM 2017.

[46] Z. Ren, M. Fan, Z. Wang, J. Zhang, C. Zeng, Z. Huang, C. Hong,
and K. Chen, “Accelerating secure collaborative machine learning with
protocol-aware rdma,” in Security 2024.

[47] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding, X. Geng, T. Feng, F. Ning, K. Chen, and C. Guo,
“Tiara: A scalable and efficient hardware acceleration architecture for
stateful layer-4 load balancing,” in NSDI 2022.

[48] J. Zhang, X. Cheng, W. Wang, L. Yang, J. Hu, and K. Chen, “FLASH:
towards a high-performance hardware acceleration architecture for cross-
silo federated learning,” in NSDI 2023.

[49] C. Zeng, L. Luo, Q. Ning, Y. Han, Y. Jiang, D. Tang, Z. Wang, K. Chen,
and C. Guo, “FAERY: an fpga-accelerated embedding-based retrieval
system,” in OSDI 2022.

[50] Y. Ma, H. Tian, X. Liao, J. Zhang, W. Wang, K. Chen, and X. Jin,
“Multi-objective congestion control,” in EuroSys ’22.

[51] J. Zhang, W. Bai, and K. Chen, “Enabling ECN for datacenter networks
with RTT variations,” in CoNEXT 2019,.

[52] J. Zhang, C. Zeng, H. Zhang, S. Hu, and K. Chen, “Liteflow: towards
high-performance adaptive neural networks for kernel datapath,” in
SIGCOMM 2022.

[53] W. Bai, K. Chen, H. Wang, L. Chen, D. Han, and C. Tian, “Information-
agnostic flow scheduling for commodity data centers,” in NSDI 2015.

[54] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“CODA: toward automatically identifying and scheduling coflows in
the dark,” in SIGCOMM 2016.

[55] W. Li, C. Zeng, J. Hu, and K. Chen, “Towards fine-grained and practical
flow control for datacenter networks,” in ICNP 2023.

[56] J. Hu, C. Zeng, Z. Wang, J. Zhang, K. Guo, H. Xu, J. Huang, and
K. Chen, “Enabling load balancing for lossless datacenters,” in ICNP
2023.

[57] W. Wang, Y. Zhang, S. Yan, Y. Zhang, and H. Jia, “Parallelization and
performance optimization on face detection algorithm with opencl: A
case study,” Tsinghua Science and Technology 2012.

[58] W. Wang, Y. Zhang, G. Long, S. Yan, and H. Jia, “CLSIFT: an
optimization study of the scale invariance feature transform on gpus,”
in HPCC/EUC 2013,.

[59] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco, “Dis-
tributed inference acceleration with adaptive dnn partitioning and of-
floading,” in INFOCOM, 2020.

[60] Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang, and K. Chen, “Enabling
edge-cloud video analytics for robotics applications,” IEEE Trans. Cloud
Comput., 2023.

[61] Y. Wang, K. Chen, H. Tan, and K. Guo, “Tabi: An efficient multi-level
inference system for large language models,” in EuroSys 2023, 2023.

[62] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in ICDCS
2017.

578

