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Graph Neural Networks (GNNs) have emerged as powerful tools to capture structural information from
graph-structured data, achieving state-of-the-art performance on applications such as recommendation,
knowledge graph, and search. Graphs in these domains typically contain hundreds of millions of nodes and
billions of edges. However, previous GNN systems demonstrate poor scalability because large and interleaved
computation dependencies in GNN training cause signicant overhead in current parallelization methods.

We present G3, a distributed system that can eciently train GNNs over billion-edge graphs at scale.
G3 introduces GNN hybrid parallelism which synthesizes three dimensions of parallelism to scale out GNN
training by sharing intermediate results peer-to-peer in ne granularity, eliminating layer-wise barriers for
global collective communication or neighbor replications as seen in prior works. G3 leverages locality-aware
iterative partitioning and multi-level pipeline scheduling to exploit acceleration opportunities by distributing
balanced workload among workers and overlapping computation with communication in both inter-layer and
intra-layer training processes. We show via a prototype implementation and comprehensive experiments that
G3 can achieve as much as 2.24× speedup in a 16-node cluster, and better nal accuracy over prior works.

CCS Concepts: • Information systems→ Data management systems; • Computing methodologies→
Distributed computing methodologies.
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1 INTRODUCTION
Graph-structured data are natural representations of many real-world applications such as social
networks and knowledge graphs. Recent works extend deep neural networks (DNNs) to capture
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structural information in graphs [14, 23, 33, 44]. This new family of DNNs, known as graph neural
networks (GNNs), achieves state-of-the-art performance in machine learning tasks such as node
classication [43, 46] and recommendation systems [47].
The reason behind GNN’s high expressiveness is that GNNs learn from the relationships be-

tween data samples while traditional DNNs are trained over individual samples with no structural
information. Figure 1 shows GNN computation process that includes neighborhood aggregation
operations and standard NN operations: in each GNN layer, one node’s new embedding is calcu-
lated by rst aggregating its neighbors’ embeddings from the previous layer, and then applying
NN operations. This computation process repeats when a node travels through each GNN layer,
capturing information from the multi-hop neighborhood of the node.

Training GNNs over billion-edge graphs is time-consuming because of the neighborhood aggre-
gation operation. The common practice to scale out DNN training over large-scale input data is data
parallelism [24]. Data parallelism splits data into multiple independent partitions, which can be
trained on dierent workers in parallel. However, data parallelism can no longer be applied to GNN
training directly because the neighborhood aggregation operation takes neighboring data samples
that may reside on a remote worker. Therefore, when data parallelism splits an input graph into
partitions, cross-partition neighboring data samples create large and interleaved computation de-
pendencies among these partitions, making the partitions dependent on each other in data-parallel
training. The dependency pattern, which is determined by input graph structure rather than the
GNN model itself, complicates the worker synchronization scheme and poses system challenges to
eciently train GNN models in parallel.

Due to the large and interleaved dependencies among partitions in data parallel training, existing
GNN systems are dicult to scale to a large number of workers. A widely adopted approach in
current GNN systems involves replicating out-of-partition neighboring node data to a worker in
order to train GNN over the graph partition independently [11, 50], causing duplicate computation
and communication systematically. Some systems such as DGL [39] and P3 [11] use sampling-based
training methods to mitigate the overhead by sampling only a small part of the graph during each
training iteration. However, sampling operations can generate biased results [6, 7] and the duplicate
work still exists and grows exponentially to the number of GNN layers [18].

Recently, full-graph training (i.e., no sampling used) [29, 31, 34, 35] has been a popular topic in
the machine learning research community for its better performance. While GNN systems including
ROC [18] are able to support full-graph training, similar to the methods above, their evaluations
still show limited scalability due to imbalanced and duplicate workload, especially when training in
large clusters or with deep GNN models [1, 25]. Moreover, they are not built for large input graphs
because the workers needs to load the entire graph into GPU memory for processing, which is not
possible when processing billion-edge graphs.

In this paper, we present G3, a distributed system that can eciently support full-graph training
of GNNs at scale on billion-edge graphs and without accuracy compromise. G3 proposesGNN hybrid
parallelism to eliminate duplicate work and eectively manage large and complex computation
dependencies between workers (§3). Furthermore, G3 uses hybrid parallelism to scale out training
by dividing the process at the per-node level and sharing intermediate results in a pipelined fashion
among peers.
However, GNN hybrid parallelism is not free, as it comes with higher system overhead due to

potential stragglers during layer-wise synchronization and more frequent data sharing. Therefore,
to maintain a maximum degree of parallelism, G3 distributes balanced computation and communi-
cation workload across workers by dividing the input graph with a locality-aware iterative graph
partitioning algorithm (§4). G3 also overlaps communication with computation using a multi-level
pipeline scheduling algorithm (§5) that implements both inter- and intra- layer pipelines with an
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adaptive bin packing strategy. In contrast to pipeline parallelism used in prior works [11, 30, 32]
which comes at the cost of accuracy loss, G3’s method does not compromise model accuracy.

We evaluate G3 on large datasets with representative GNN models and compare it with state-
of-the-art GNN systems. Our results show that G3 can achieve up to 2.24× speedup in a 16-node
cluster, and better nal accuracy (∼6% higher) over prior works. Besides, we demonstrate G3’s
ability in exploring complex GNN models and high-dimensional graph datasets: it can achieve
up to 25.9× speedup with a 4-layer deep GNN model and 1.94× when training over graphs with
256-dimensional input features.

Overall, this paper makes the following contributions:
• G3 introduces GNN hybrid parallelism to handle large and complex computation dependencies,
enabling scalable GNN training on large graphs without accuracy loss.
• G3 accelerates the training process by balancing workloads across workers with locality-aware
iterative graph partitioning, and overlapping communication with computation using multi-level
pipeline scheduling.
• We implement a G3 prototype and conduct comprehensive experiments over large graphs,
showing that G3 achieves as much as 2.24× speedup in a 16-node cluster, and better nal
accuracy over prior works.

2 BACKGROUND ANDMOTIVATION
We rst review the computation process of GNN training and then demonstrate the scalability
issues in distributed GNN training of prior work through analysis and experiments.

2.1 Graph Neural Networks (GNNs)
GNNs are a family of neural networks that learn node representations from graph-structured data
(i.e., nodes and links) [14, 23, 33, 44]. The key idea is to aggregate information from neighbors
following the graph structure, and perform embedding transformations layer-by-layer.

GNNComputation in One Layer. Figure 1 shows the process of GNN computation on the blue
node in GNN layer-k , which consists of two stages: neighbor aggregation stage and NN operations
stage. In the aggregation stage, layer-k aggregates the node’s neighboring nodes’ embeddings
calculated from the preceding layer (if layer-1, the embeddings are the corresponding nodes’ input
features). Afterwards, layer-k applies standard DNN operations such as matrix multiplication in
Graph Convolution Network (GCN) [23], to the aggregation result, and nally outputs the layer-k
embedding for the blue node. All other nodes in the graph process the same above computation in
layer-k with their own neighbors.

Formally, the above computation process of GNN layer-k is expressed as follows:

a(k)v = Aggregate(k)({h(k−1)u | u ∈ 𝒩 (v)})

h(k )v = Update(k )(h(k−1)v ,a(k )v )

where h(k )v denotes the node embedding of node v in the GNN layer-k , and𝒩 (v) denotes neighbors
of v . For each node v in layer-k , Aggregate rst outputs a(k )v by gathering the embeddings of its
neighbors h(k−1)u ∈𝒩 (v) with an accumulation function such as mean or sum, then Update computes the

node’s new embedding from its previous embedding h(k−1)v and the aggregation result a(k)v .
Forward/Backward Propagation. For an L-layer GNN model, the above computation iterates

from layer-1 to L among all nodes in the forward propagation. Note that after the layer-L compu-
tation, the embeddings h(L)v capture information for all neighbors within L hops of v , and can be
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Fig. 1. Computation of one node in layer k by first aggregating its neighbors’ embeddings from previous
layer k − 1, then applying NN operations.

used for downstream tasks such as node classication and link prediction. Next, all nodes’ h(L)
with their labels are fed to a loss function to generate the loss. With the loss, gradients are then
calculated from layer-L to 1 following the chain rule in the backward propagation. Finally, the
optimizer updates the GNN model with the gradients attached to it, ending the GNN training for
one iteration.

As shown in Figure 1, GNN’s propagation between consecutive layers is not only over the same
data sample but also across dierent samples due to the neighborhood aggregation operations.
These cross-data-sample propagation paths create computation dependencies between data samples.

2.2 DNN Parallelization Methods
Data, model, and pipeline parallelism are the most common parallelization methods used in dis-
tributed DNN training [12, 17, 26, 37, 38, 42]. However, we cannot directly apply these methods to
GNN training due to its unique aggregation operations (§2.1). Here we briey introduce how they
can be adopted and implemented in GNN training, as well as their disadvantages that are specic
to the GNN training process.

Data Parallelism. Data parallel training is widely implemented in current GNN systems [18,
28, 50, 51] as large graphs may not be able to t in a single GPU memory and hence must be
partitioned and processed in a distributed manner. Implementing data parallelism in GNN needs to
partition the input graph. However, these graph partitions cannot be independently processed, due
to the computation dependencies between these partitions created by GNN’s neighbor aggregation
operations. Existing systems adopt methods such as cross-partition neighbor replication to satisfy
these computation dependencies. However, as we show in §2.3, these methods introduce system
overhead and lead to scalability limitations.

Model Parallelism. In DNN training, model parallelism partitions a model across workers. The
worker that holds the input layer of the model is fed with the training data, followed by intermediate
results being transmitted sequentially across workers. As the training workow is still serialized
between workers, the advantage is not speeding up the training process, but reducing the memory
footprint of a huge model. However, since GNNs typically use small models which commonly have
only 2 to 5 layers, model parallelism is not used to accelerate training in previous GNN systems.

Pipeline Parallelism. In pipeline parallelism, the DNN model is partitioned and distributed
across workers as in model parallelism. The training data is also split into batches, which are
then streamed into the rst worker. In the pipeline, every worker computes output activations or
gradients for a batch and immediately propagates them to the downstream worker, which hence
keeps workers busy and improves workers’ utilizations. While pipeline parallelism assumes that
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batches are entirely independent to process [30], this assumption no longer holds in GNN training.
When a worker processes a batch, it needs to re-build a subgraph from the batch, which needs
to include multi-hop out-of-batch neighbors for neighborhood aggregation operation in GNN,
causing computation overhead due to duplicate work across workers. A study [8] shows that
adopting pipeline parallelism in GNN training leads to signicant eciency degradation: training
time increases by 5× in a 4-node cluster compared to the single GPU result.

2.3 Training GNNs on Large Graphs
Training GNNs over real-world graphs with tens of millions of nodes and billions of edges poses
challenges in hardware capacity and overall eciency. We put existing methods into two categories
and summarize their techniques as follows.

Sampling-based GNN Training. Some GNN training methods use neighbor sampling strate-
gies that down-sample nodes’ neighbors in the neighborhood aggregation operation to reduce
computation cost [6, 14, 36, 47, 48], and hence speed up the training process. However, as observed
in previous works [16, 18], these techniques often ignore a large fraction of neighbors and thus
may suer from accuracy loss. For example, a classical GNN model, GraphSAGE [14], samples and
aggregates only a small number (10 to 25) of neighbors for each node. Moreover, the duplicate work
still exists and grows exponentially to the number of GNN layers, making neighbor sampling less
ecient when training deep GNN models [1, 25]. A recent work [40] also reports that the sampling
step is bounded by the I/O throughput of the storage and becomes the bottleneck limiting GPU
utilization.

Besides, some sampling-based GNN training methods are used together with graph partitioning
when the input graph is too large to t into a single device. In this case, the result may suer from
both accuracy loss and scalability limitation as well [39].

Full-graph GNN Training. Ecient full-graph GNN training is especially challenging on large
graphs as it is both computation-intensive and memory-intensive. Therefore, to improve overall
eciency, many existing GNN systems [18, 28, 50, 51] leverage data parallelism by partitioning
and distributing the input graph to multiple workers that collaboratively train the same GNN
model. However, the cross-partition computation dependencies in data parallel training make
workers dependent on each other. These computation dependencies, determined by the input graph
structure, are usually large and complex in real-world graphs. To satisfy the dependencies, two
types of schemes are proposed in previous works:
• Layer-wise communication barriers. NeuGraph [28] implements layer-wise communication
barriers for global synchronization of intermediate results. This communication introduces extra
overhead and can be straggled by unbalanced workloads.
• Cross-partition neighbor replication. The method of loading all out-of-partition neighboring
node features for each worker’s assigned partition, as used in DGL [50], ROC [18], and other
systems, leads to duplicate computation and communication. This is because the same data may
be loaded and computed by multiple workers. Additionally, as GNN training aggregates node
embeddings from an L-hop neighborhood, the amount of duplicate work increases exponentially
with the number of GNN layers L.
Our experiment conrms the analysis. Figure 2 shows the speedup of training throughput for

ROC (results from [18]) and DGL on the Reddit dataset [14]. When the number of workers scales
from 2 to 16, the performance of DGL and ROC only increases as much as 1.4× and 3.2×, far lower
than the ideal 8× speedup ratio, as represented by Linear.
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Fig. 2. Scalability of existing GNN systems without neighbor sampling on Reddit. Numbers are reported
based on each system’s throughput on 1-node. Linear represents the ideal speedup ratio.

Full-graph GNN training is actively researched in today’s machine learning research commu-
nity [31, 34, 40]. However, for the reasons described above, current GNN systems fall short of
supporting full-graph training when high accuracy and eciency are desired at the same time.

3 GNN HYBRID PARALLELISM
Existing systems are less ecient in training GNNs at scale due to the complex computation depen-
dencies created by neighbor aggregation, and the naive adoption of existing DNN parallelization
methods results in signicant overhead.

We propose GNN hybrid parallelism, a novel parallelization strategy that avoids duplicate work
by sharing intermediate results peer-to-peer between GNN layers.

3.1 GNN Hybrid ParallelismWorkflow

worker 
#1

worker 
#2

worker 
#0

DP Dimension

MP Dimension
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Input Graph

part #0

part #1

part #2
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Fig. 3. A running example of hybrid-parallel training workflow on an 8-node graph with 3 workers. The
workflow incorporates three parallel dimensions (data, model, and pipeline). The detailed explanation on the
example is in §3.1.

G3 uses GNN hybrid parallelism to enable both data parallelism and model parallelism, while
also pipelines the inter- and intra-layer training process. Figure 3 depicts a running example on an
8-node graph with 3 workers.
To begin with, the input graph is divided into smaller partitions for training, known as the

data-parallel dimension. In the given example, an 8-node graph is split into three parts, each
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marked with a dierent color. After partitioning, each partition is assigned to a separate worker,
and edges connecting the partitions become computation dependencies between the workers.

The training process continues by having each worker train its own GNNmodel with the assigned
partition. Once a worker completes computation on one layer, the output is not only used as input
for the next layer computation on that worker, but also sent peer-to-peer to other workers that
have dependencies on it (as demonstrated by the cross-worker data-sharing arrows in the given
example). This creates the model-parallel dimension.

In each layer, nodes are divided into smaller groups called "bins" (depicted as colored rectangles
in Figure 3) and processed one at a time by a worker, creating a pipeline opportunity for overlapping
computation and communication: once a bin’s computation is nished, the worker can send its
output to other workers and start processing the next bin. These pipelines exist for both inter- and
intra-worker tasks, forming the pipeline-parallel dimension.
The backward pass is similar to the forward pass, with the dierence being that the inputs are

gradients rather than node embeddings. Once an epoch is completed, the GNN model parameters
are aggregated and averaged using the AllReduce method across all workers.

Benets in GNN Hybrid Parallelism. GNN hybrid parallelism enables the system to scale
with the growth of the graph size and model size for the reasons listed below.

First, hybrid parallelism handles interleaved computation dependencies in GNN training without
the need for cross-partition replication, as the model-parallel dimension shares intermediate results
peer-to-peer, reducing system overhead.

Second, hybrid parallelism creates opportunities to overlap computation and communication in
inter- and intra-layer training by packing graph nodes into bins and processing them in pipelines.

3.2 System Challenges
The benets of GNN hybrid parallelism come with challenges that must be overcome to fully exploit
acceleration opportunities.

Challenge 1: Balanced Workload Distribution. Data parallelism is a technique that divides
a workload into small partitions to process them simultaneously. In order to prevent stragglers in
parallel processing, it is important to have a balanced workload in each partition. In GNN hybrid
parallelism, communication across partitions becomes signicant and it is important to balance the
communication workload as well (§4.1). Previous works, such as DGL [50] and NeutronStar [40],
use o-the-shelf graph partitioning algorithms that only balance computation workload but do
not consider the added complexity of communication in GNN training. In GNN training, simply
minimizing the global edge-cut on the input graph, like in graph processing tasks, cannot balance the
communication workload over each partition (discuss in §4.1). To address this issue, we formulate
the cost factors and propose a locality-aware iterative graph partitioning algorithm (§4) that
eciently balances workloads across workers.

Challenge 2: Ecient Pipeline Scheduling. In GNN hybrid parallelism, workers communi-
cate with each other and share intermediate results to satisfy the GNN computation dependencies
across workers. To construct ecient pipelines globally that overlap computation and communica-
tion, the order of computation is important as it aects the blocking time of each worker due to
cross-worker dependencies. Existing methods, e.g., HGL [13] and JasmineGraph [20], use simple
FIFO strategies when processing graph nodes, which does not fully utilize the opportunity to over-
lap communication and computation. G3 tackles this problem with a multi-level pipeline scheduling
algorithm (§5) which proactively schedules for both inter- and intra-layer training pipelines to
maximize the chance of overlapping, with a bin packing mechanism to assign computation priority
and adapt to memory and model size.
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Notation Description
G = (V , E) Input graph with its node and edge set
P(G,k) = k-partition result of graph G
{V1, ...,Vk } Vi represents the nodes in partition i

E(Vi ) Edges in G that destine to nodes in Vi
V r emote
i Out-of-partition neighbors of partition i

dv Degree of node v from G

N (v) Neighbors of node v from G

Table 1. Notations and factors aecting GNN work-
load over a partition in hybrid parallelism. Fig. 4. Two stages of partitioning algorithm

3.3 Comparison with Recent Works
We note that similar ideas of GNN hybrid parallelism have been explored in some recent works [11,
34]. However, existing solutions fail to fully exploit the opportunities to reach the maximum degree
of parallelism. They did not identify the challenges of high system synchronization overhead raised
by the idea of GNN hybrid parallelism. More specically, existing solutions (1) did not balance
cross-partition communication in graph partitioning algorithms, and (2) did not explore more
ecient pipelines with minimized waiting time by assigning dierent computation priorities.
G3 fully explores these challenges that are unique in distributed GNN training, presents com-

prehensive optimization and implementation to address the system challenges, and evaluates the
solutions with both end-to-end and microbenchmark experiments.

Moreover, in the pipeline-parallel dimension, nodes are grouped into smaller groups called bins
and processed in pipelines. This allows G3 to adapt bin sizes to the GPU memory capacity and
enables G3 to handle larger graphs, unlike full-graph training systems like NeutronStar [40] and
BNS-GCN [34] which may encounter GPU memory limitations with large graphs.

4 BALANCEDWORK PARTITIONING
In distributed GNN training, achieving a balanced workload among partitions requires more than
just equal graph nodes and global min edge-cut. In this section, we formulate the cost factors
in distributed GNN training workload and propose a locality-aware iterative graph partitioning
algorithm that eciently balances these factors across workers.

4.1 Cost Factors in Distributed GNN Training
When assigning a graph partition to a worker, several graph-related factors aect the worker’s
training workload. We summarize several factors which determine the workload of partition Vi as
follows:
(1) Number of nodes |Vi |, which directly contributes to the GNN computation cost.
(2) Number of edges |E(Vi )|, which aects the GNN computation cost due to neighborhood aggrega-

tion.
(3) Number of out-of-partition neighboring nodes |V r emote

i |, which determines the amount of data
to be transferred out to other workers after each layer’s computation. This is essentially the
peer-to-peer communication cost in the model parallel dimension of hybrid parallelism.
Chunk-based graph partitioning method, used in NeuGraph [28], ROC [18] and NeutronStar [40],

partitions the graph into chunks that contain nodes with consecutive IDs. While it balances |Vi |,
the actual amount of workload may be highly unbalanced because the method does not consider
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the total number of edge cuts, resulting in unbalanced |E(Vi )| as well as large and unbalanced
|V r emote
i |.
METIS algorithm [21], used by DGL [50] and BNS-GCN [34], can nd a partition decision with

minimum edge-cut. However, minimizing edge-cut does not balance |V r emote
i | for each partition i .

Hence, the communication workload across workers still varies.

4.2 Locality-aware Iterative Partitioning
The partitioning algorithm has two stages as depicted in Figure 4: (1) the weighted partitioning
stage that balances per-partition computation cost and minimizes global communication costs. (2)
the iterative re-partitioning stage that balances per-partition communication costs.
First, in the weighted graph partitioning stage, the algorithm generates a graph partitioning

decision with a balanced computation cost among partitions while minimizing the global com-
munication volume. The global communication volume is dened as the sum of each partition’s
communication volume, which is determined by the number of each partition’s remote nodes. We
formalize our optimization objectives as follows:

minimize Tmax_nn = max
Vp ∈P
|Vp |, (1)

minimize Tmax_aддr = max
Vp ∈P

∑
v ∈Vp

dv , (2)

minimize Ttotal_comm =
∑
Vp ∈P

|V r emote
p |, (3)

where P = {V1,V2, ...} denotes the partitioning decision and Vi contains all nodes v in partition i .
Equation 1 and 2 essentially balance computation cost among partitions while Equation 3 minimizes
global communication cost.
The objectives above formulate a multi-constraint graph partitioning problem [22]: a vector of

weights is assigned to each node, and the goal is to produce a partitioning such that the partitioning
satises a balanced constraint associated with each weight, while attempting to minimize the global
communication volume (or edge-cut).
In our formulation, the balanced sum of node feature size (Equation 1) and the balanced sum

of node degree (Equation 2) in each partition are two constraints while we aim at minimizing the
total communication volume (Equation 3).

Note that even though the global communication volume is minimized by the algorithm above,
the communication cost of each partition cannot be balanced under the multi-constraint graph
partitioning problem setting, as it is a result of the actual partitioning and hence cannot be pre-
dened as a constraint.
Second, in the iterative re-partitioning stage, the algorithm swaps nodes between partitions to

balance the communication volume in each partition. We formalize our optimization objective as
follows:

minimize Tmax_comm . = max
Vp ∈P
|V r emote
p | (4)

The algorithm is shown in Algorithm 1. In each iteration, we rst nd two partitions that have
the highest and lowest number of remote nodes, denoted as Vmax and Vmin . Then we consider the
locality in each node by picking a node vmax in Vmax which has the highest number of remote
neighbors (i.e., out-of-partition nodes in its neighborhood) and a node vmin in Vmin which has
the lowest number of remote neighbors if moved out of Vmin , and then we swap these two nodes.
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Algorithm 1: Locality-aware Iterative Partition
Data:
(1) Input Graph: G
(2) Number of Workers: n
(3) Multi-constraint Partition: PMulti (G,n) = {V1, ..,Vn}
Result: Final Partition P = {V1, ..,Vn}

1 begin
2 P ←− PMulti (G,n)

3 while true do
4 Vmax ←− argmaxVp ∈P |V

r emote
p |

5 Vmin ←− argminVp ∈P |V
r emote
p |

6 ratio ←− |V r emote
min |/|V r emote

max |

7 if ratio is converged then
8 return P

9 end
10 vmax ←− argmaxv ∈Vmax

|vr emote |

11 vmin ←− argminv ∈Vmin
|N (v) −Vmax |

12 Vmax ←− Vmax − {vmax } + {vmin}

13 Vmin ←− Vmin − {vmin} + {vmax }

14 end
15 end

The above process repeats until the dierence between |V r emote
min | and |V r emote

max | converges below a
threshold γ (we use 0.5% in our experiment). We also stop the process if cyclic swapping.

Fast Neighbor Tracking Algorithm. Finding every partition’s out-of-partition neighbors
V r emote
i can be time-consuming (line 4–5) because the search of all nodes in Vi takes O(|V |) time.

We present an algorithm that enables incremental updates to track each node’s out-of-partition
neighbors. The algorithm reduces the time complexity to O(dv ), where v is the node moving in or
out.
Making incremental updates in V r emote

i is not straightforward. This is because moving a node
out of Vi does not necessarily remove all its remote neighbors from V r emote

i , as those neighbors
could be remote neighbors to other nodes inVi . To solve this problem, we maintain the in-partition
degrees dinv for every node v ∈ V r emote

i . For example, when a node v moves out from Vi , the
in-partition degrees of v’s remote neighbors, vr emote , will be decreased by 1, and the node will
be removed from V r emote

i if its dinv reaches 0. The technique is used when implementing node
swapping (line 12–13) between the two aected node sets, rather than triggering a global recount.
Moreover, as the search procedures (line 4–5 and line 10–11) are independent without dependencies,
they are parallelized on multiple CPU cores with shared memory.

5 MULTI-LEVEL PIPELINE SCHEDULING
In GNN hybrid parallelism, workers share intermediate results to meet computation dependencies.
To achieve ecient cross-worker pipelines to overlap computation and communication, the com-
putation sequence is crucial as it impacts worker waiting time. G3 proposes a multi-level pipeline
scheduling algorithm that exploits opportunities for host-GPU communication, GPU computation,
and network communication via inter- and intra-layer pipelines.
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5.1 Bin Packing Mechanism
The multi-level pipeline scheduling algorithm utilizes a bin packing mechanism: In each layer,
nodes are divided into smaller groups called bins and processed one at a time by a worker. Once a
bin’s computation is nished in one layer, the worker can send its output to other workers and
start processing the next layer.

The lifespan of a bin has 5 stages in the forward pass, as shown in Figure 5. First, the scheduling
algorithm decides on the allocation of nodes and generates a subgraph containing these nodes
and their neighboring nodes (even if initially they are not in the bin). Next, the subgraph and
its node embeddings will be transferred from host memory to GPU memory and used for GNN
computation. Finally, the output will be transferred out from GPU and shared with remote workers
when required.

The backward pass is similar to the forward pass, except that the inputs are gradients instead of
node embeddings. We reuse the bin packing decision in the forward pass as the backward pass of a
bin is performed in exactly the reverse direction of the forward. The scheduling decision made in
the forward is a good indication of how the backward should be scheduled.

Analysis and Comparison. Utilizing the bin packing mechanism in GNN training allows for
ne-grained division of the training process at the per-node level, providing opportunities for
overlapping computation and communication. Furthermore, it helps avoid loading the entire graph
onto the GPU, which can prevent GPU memory issues when the input graph is large (§7.2), as seen
in other GNN systems [34, 40].

We note that HGL [13] and JasmineGraph [20] also utilize bin packing, but they pack bins at the
subgraph level and process them in a FIFO order without any priority setting. In contrast, G3 packs
bins at the node level and adapts to GPU memory capacity to improve utilization while avoiding
running out of GPU memory. G3 also proactively schedules inter- and intra-layer pipelines based
on computation priority (§5.2).

5.2 Pipeline Strategies
In GNN hybrid parallelism, cross-partition dependencies are handled by sharing intermediate
results via peer-to-peer communication. Specically, a node’s embedding is sent to the workers
where its remote neighbors are located. To optimize eciency, the communication of a bin is
overlapped with the computation in the next layer, either within the same worker (intra-layer
pipeline) or on a remote worker (inter-layer pipeline), as shown in Figure 5.
(1) Inter-Layer Pipeline

We propose two designs that maximize overlapping opportunities in inter-layer pipelines.
Node Computation Priority. Since the total communication cost for a layer is xed and

distributed evenly among workers with our partitioning algorithm (in §4), we aim to begin data
transmission as early as possible. Therefore, our scheduling algorithm (described in §5.3) prioritizes
computation for nodes that have more remote neighbors outside of their partition, as these nodes
generate more communication workload.

Eager Computation. From the perspective of the receiving worker, as soon as the worker
completes computation for the current layer, it can begin GNN computation on nodes that are
ready for the next layer. A node is considered ready when its remote neighbors’ embeddings have
all been received from other workers.

When the memory footprint of ready nodes exceeds a threshold, eager computation packs them
together and begins processing. The threshold is set to half the size of the GPU memory. This
threshold is consistent with the bin size in the intra-layer pipeline (§5.2) to create smooth pipelines.
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The above optimization opportunity exists because our node priority setting ensures that other
workers will begin transmitting output embeddings as soon as possible. This way, the receiving
worker can begin processing some of the nodes in the next layer using the partial results received
from other workers.
(2) Intra-layer Pipeline

Computing with GPUs requires loading data into GPU memory. Because GPU memory is
relatively small compared to host memory, even when the input graph is partitioned across multiple
workers, individual graph partitions may still be larger than the GPUmemory of a worker. Therefore,
as described in the bin packing mechanism, a layer’s computation might be split into multiple bins
and processed in the GPU sequentially (Figure 5).
In order to construct an eective pipeline that overlaps GPU computation and host-GPU com-

munication, we utilize at most half the size of GPU memory for each bin so that one bin can be
processed while another is loading in or out of the GPU. Additionally, the algorithm adapts bin
sizes based on the memory requirements of each model layer to optimize eciency. Since dierent
models have dierent memory footprints, our algorithm adaptively adjusts bin sizes based on the
model structure.

5.3 Scheduling Algorithm
We now introduce the multi-level pipeline scheduling algorithm that realizes the bin packing
mechanism and pipeline strategies outlined above.

Step 1. Sorting Nodes. The worker uses BFS to traverse its assigned graph partition from any
node in every connected component, sorting the nodes in the order of their visit. Then, the worker
separates the nodes with remote neighbors from the rest and prioritizes them by placing them at
the front of the list, creating the priority list ℒ. This step corresponds to the node computation
priority setting in inter-layer pipelines.

Step 2. Calculating Bin Size Limit. We estimate the GPU memory required for one node in a GNN
layer by using the layer’s input and output embedding size. The bin size limit is then adaptively
calculated for each layer by dividing half of the GPU memory size by the per-node memory usage.
This ensures that each bin can be processed while another is loading in or out of the GPU without
exceeding the GPU’s memory limit. This step decides the bin size limit for intra-layer pipelines.

Step 3. Index-based Bin Packing. We iterate through the priority list ℒ sequentially (index-based),
adding ready nodes and their neighbors into a bin. Once a bin reaches its limit, we move on to
a new bin and continue adding until all nodes in ℒ are processed. This step schedules bins for
intra-layer pipelines on each worker and realizes eager computation.
Index-based partitioning preserves locality when adjacent nodes are stored close to each other

as [18, 52] shows, and our BFS-based sorting in the rst step creates such locality, which increases the
chance of packing nodes and their neighbors into the same bin and helps accelerate neighborhood
aggregation in GNN training.
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Analysis. The scheduling algorithm’s time complexity is primarily determined by the BFS
used for the computation priority of nodes, which takes O(|E | + |V |), the same as initializing the
graph data. In practice, GNN training begins on the GPU after the rst bin is generated on the CPU.
While the remaining bins are generated on the CPU, their costs do not aect overall performance
as they are hidden under the GPU computation.
Proving the correctness of the algorithm is straightforward, as it only alters the computation

order for the nodes without aecting the computation itself in GNN training. Our experiments on
time-to-accuracy (§7.3) also conrm the correctness of the algorithm and our implementation.

6 IMPLEMENTATION
In this section, we give an architecture overview of G3 (§6.1), and present the implementation
details of the G3 prototype (§6.2).

6.1 Overview
The workow of G3 is shown in Figure 6. G3 takes a large graph as input and goes through two
stages (i.e., locality-aware iterative graph partitioning and multi-level pipeline scheduling). In
particular, the rst stage partitions the input graph iteratively in order to balance the workload
according to the cost model. Then, the second stage trains the GNN using inter- and intra-layer
pipeline scheduling to overlap communication with computation.
The graph partitioning stage is processed oine in the scheduler. For the online scheduling

stage, the architecture of G3 takes advantage of the scheduler (i.e., global and local task scheduler)
to synchronize the training process. Specically, each worker in the scheduling stage runs a local
task scheduler to schedule its local task and an executor process for training tasks, while the worker
with rank 0 runs a global scheduler that coordinates the model synchronizations across the cluster.

6.2 System Implementation
We implement G3 purely in Python. The functionalities in G3 include graph partition, task execution,
and communication handlers between nodes in the graph. We build G3 on top of DGL for GNN
operations and PyTorch for parameter synchronization, respectively.

Scheduler. The scheduler process takes charge of graph partitioning and online model coor-
dination. Before training, the scheduler generates each partition’s nodeID lists as described in
Algorithm 1. The lists are then passed to DGL partition APIs to partition the graph into correspond-
ing subgraphs, which contain all nodes listed and the edges destined for them. As described in §4.2,
to accelerate the partition process, G3 parallelizes it through multiple CPU cores. During training,
the global scheduler runs a coordination thread for layer-wise parameter synchronization. Note
that G3 wraps and synchronizes each layer’s parameters separately. Therefore, the coordination
thread is responsible for monitoring the layer-wise BP programs in all workers, and notifying
all workers to simultaneously update the corresponding layer parameters once all workers have
nished the computation.

Workers. The worker process takes charge of P2P data sharing, online data-loading, and task
execution. The worker rst analyzes its subgraph and sets up send&recv hash tables for P2P data
sharing. The hash tables contain dst/src workers with respect to their nodeIDs, which indicate
the P2P inter-layer transmission paths. As each worker processes upon its dedicated partition
throughout training, such tables remain unchanged and reside permanently in host memory for fast
lookup. For the data-loading part, the worker achieves fast online bin packing by leveraging unused
CPU resources (the same way as partition does) to judge ready nodes, and spawns data-loading
threads for each bin to wrap the bin’s nodes and their incident edges into DGLBlock format and
then pushed into TaskQ for computation. The main process consumes tasks sequentially, and then

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 143. Publication date: June 2023.



143:14 Xinchen Wan, et al.

Scheduler
Locality-aware iterative 

partitioning

Workers
Multi-level 

pipeline scheduling 

Input
Large graph Balance workload 

in GNN hybrid 
parallel training

Overlap comm. with 
comp. in inter- and 
intra-layer pipelines

Fig. 6. Overview of G3 System

Ogbn-
Amazon

Ogbn- Twitter-
products papers 2010

Nodes 2.45M 1.60M 111.1M 41.65M
Edges 61.86M 132.2M 1.616B 2.405B

Features 100 200 128 128
Classes 47 107 172 100
Avg. Deg 50.5 82.7 29.1 57.7

Table 2. Graph datasets used in our evaluation.

splits the output result into pieces and spawns threads to send them out, referring to the generated
P2P hash tables.

7 EVALUATION
In this section, we evaluate G3 with comprehensive testbed experiments. We rst show the scal-
ability of G3 by comparing it with mini-batch systems (§7.1), and its throughput performance
compared to other full-graph systems (§7.2). Then we show G3’s fast convergence speed and better
accuracy compared to all baselines (§7.3). We also report the GPU utilization of each system (§7.4).
Furthermore, we show the potential of G3 by exploring more complex GNN models and graphs in
terms of layers and features (§7.5–§7.6). Finally, we demonstrate the eectiveness of G3’s designs
by comparing them with the state-of-the-art strategies (§7.7).

In summary, our key results reveal that:
• G3 achieves higher throughput than all baselines by up to 2.24× in a 16-node cluster, and as
much as 5.5× better GPU utilization.
• G3 achieves up to 2.3× faster convergence speed and better nal accuracy (∼6% higher) compared
to baselines.
• G3 is able to explore more complex GNN models and graph datasets. It achieves as much as
25.9× speedup with a 4-layer GNN model, and 1.94× speedup when training over graphs with
256-dimensional features compared to DGL.
• Themicrobenchmarks reveal that balanced partition andmulti-level pipeline improve the training
performance by up to 11.66×, and the benets increase when scaling.
Experiment setup.We evaluate G3 using 8 physical servers (each with 2 RTX 3090 GPUs, 80

CPU cores (2.1GHz Intel Xeon Gold 5218R), 256GB RAM, and 2 Mellanox ConnectX5 NICs), and 4
Mellanox SN2100 switches. We divide one physical server into two docker containers, each with a
3090 GPU, 40 CPU cores, 128GB RAM, and a 10Gbps virtual Ethernet interface1 to get a 16-node
testbed. All nodes run 64-bit Ubuntu 18.04 with CUDA v11.1, DGL v0.6.1, and PyTorch v1.10.1.

Datasets. Table 2 lists four graph datasets that we used in our evaluation, including three popular
GNN datasets: Ogbn-products [15], Amazon [48], and Ogbn-papers [15], and one graph dataset
Twitter-2010 [3, 4]. We generate random features for Twitter-2010 ensuring that the ratio of labeled
nodes remains consistent with what we observed in the OGB datasets, and only use the throughput
results when training over it.

GNNmodels &Metrics.We use three representative GNN models, GraphSAGE [14], GCN [23],
and GAT [33] for evaluation. By default, we adopt standard 2-layer GNNs with a hidden dimension
of 16 in all experiments. For GAT, we use 8 attention heads. We test the performance of G3 on node

1We use SR-IOV to separate the resource of physical NIC. [9] shows that it achieves nearly the same performance as the
non-virtualized environments.
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classication tasks (e.g., predicting the category of a product in the Ogbn-products dataset). We use
throughput as our evaluation metric, which is the sum of all workers’ average throughput.
Baseline. We compare G3 with two kinds of GNN training systems, i.e., mini-batch system and

full-graph system, for dierent evaluation purposes.
For mini-batch systems, we compare G3 with DGL [39, 50], a representative deep learning library

for graphs, in terms of scalability and accuracy. We use DGL with PyTorch backend and conduct
distributed training experiments. We use METIS, the default partition algorithm of DGL, in all DGL
evaluations. We also compare with ClusterGCN [7], a method that does not synchronize features
among workers during training, in terms of time-to-accuracy. Note that we do not compare with
it upon throughput, as it has no feature communication throughout training and hence always
achieves linear scalability, but at the cost of signicant accuracy loss (see §7.3).
For full-graph systems, we compare G3 with BNS-GCN [34] and NeutronStar [40] in terms of

throughput, accuracy, and GPU utilization. For system congurations, we maintain the default
partition strategies for each system, i.e., using METIS for BNS-GCN and a chunk-based approach
for NeutronStar. We set the sampling ratio to 1 to ensure full-graph training in BNS-GCN. We
implement GraphSAGE aggregators based on the existing GCN implementation in NeutronStar.
We excluded these systems from our scalability experiments as they are not specically designed
for scalability. As previously reported in their original papers (Figure 5 in[34], Figure 12 in [40]),
these systems show diminishing returns when increasing the number of workers. This is primarily
due to large system overhead from cross-partition replication, as well as unbalanced workloads
and underutilized overlapping opportunities, as discussed in §2.3. Additionally, these systems load
the entire graph directly onto the GPU for parallel processing, making it infeasible to train GNNs
on billion-edge graphs due to GPU memory constraints (Figure 11), especially when the cluster
size is small.

Training pattern. In our experiments, G3, BNS-GCN, and NeutronStar perform full-graph
training, while DGL performs sampling-based mini-batch training. For mini-batch training, we set
the batch size of DGL to 1000 in all experiments. For a fair comparison upon throughput, we set
our initial bin size (§5.2) equal to the batch size when comparing G3 with DGL. For neighborhood
sampling in DGL, we adopt the sampling strategy (25, 10) [14] in all experiments. For full-graph
training, we set G3’s initial bin size to dierent values according to the input graph. For small
graphs including Ogbn-products and Amazon, the initial bin size is set to 5000 to achieve high
initial throughput like other full-graph systems, as they parallelize training by directly loading the
whole graph into GPUs. When training over large graphs including Ogbn-papers and Twitter, we
set G3’s initial bin size to 1000 to avoid GPU memory explosion.

7.1 Scalability
We demonstrate G3’s scalability by comparing with DGL over four datasets in a cluster whose size
ranges from 2 to 16. We train three models on each system to obtain the global throughput. The
results are shown in Figure 7, 8, 9, and 10.

Dierent Systems. DGL shows poor throughput performance in all models with increasing
cluster size. For example, when training over Ogbn-papers with the cluster size from 8 to 16, we
only observe as much as 1.32× speed up compared to the double cluster size. This corresponds with
the discussion in §2 that even with sampling strategies, the data parallelism scheme adopted by
DGL suers from duplicate computation and communication among workers. Compared to DGL,
G3 achieves better scalability improvement almost in all cases. For example, G3 speeds up training
by 1.64× and 1.74× on average over Ogbn-papers and Twitter-2010 when the cluster scales from 8
to 16, which is higher than those of DGL, i.e., 1.32× and 1.44×. We remind the readers that training
in large graphs is more challenging as their dependencies are more complex and would exaggerate
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Fig. 7. Training 3 GNN models over Ogbn-products. G3 is able to gain up to 3.66× higher throughput over
DGL.
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Fig. 8. Training 3 GNN models over Amazon. G3 is able to gain up to 2.48× higher throughput over DGL.
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Fig. 9. Training 3 GNN models over Ogbn-papers. G3 is able to gain up to 1.47× higher throughput over DGL.
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Fig. 10. Training 3 GNN models over Twier-2010. G3 is able to gain up to 1.91× higher throughput over DGL.

the scalability issue. Therefore the results above indicate better scalability of G3 than DGL. Overall,
G3 outperforms DGL by 2.04×, 1.51×, 1.32×, and 1.13× in a 16-node cluster when training over
four datasets, respectively.

Dierent GNN models. The training performance varies signicantly across dierent GNN
models. In a 16-node cluster, while G3 achieves higher performance improvement (1.24–2.45×
speedup) with GraphSAGE and GCN models, it only speeds up GAT training process by 1.25–1.46×.
In specic, G3 and DGL achieves almost the same throughput when the cluster size is small (from
2 to 8). This is because: 1) GAT model is more computation-intensive; 2) the improvement of
communication is marginal when in small clusters. Hence, there is little room for G3 to optimize
training. Moreover, GAT training involves extra intermediate attention tensors generation during
forward propagation. The extra generated tensors increase the data volume transmitted between
CPU and GPU, which therefore slows down the training process.
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Fig. 11. Full-graph training over 4 datasets. G3 is able to gain 1.08-2.24× higher throughput over baselines.

7.2 Comparison with Other Full-graph Systems
We compare with other full-graph systems, i.e., BNS-GCN and NeutronStar, in terms of training
throughput over four datasets in a 16-node cluster. We train GraphSAGE and GAT models in each
system and obtain the global throughput.
The results are shown in Figure 11. G3 achieves 1.08-2.24× speedups over two baselines in all

settings. NeutronStar performs worst in all settings because it adopts the chunk-based partition
strategy that requires a signicant communication workload. BNS-GCN performs better because
METIS partition minimizes global edge-cut and thus incurs a low global communication workload.
However, such strategy cannot balance communication for each partition, as described in §4.1,
and hence may have straggler issues. Besides, both systems require loading every subgraph in
each assigned worker for full-graph training. Such manner has two issues: 1) It fails to exploit the
overlapping opportunities between computation and communication; 2) It results in an out-of-
memory error when training over large graphs, as the size of the whole subgraph can easily exhaust
the GPU memory in each worker. For G3, the balanced partition strategy it adopts achieves both
low global communication and balanced communication for each partition, resulting in a balanced
subgraph distribution for training. Moreover, the multi-level pipelining achieves: 1) ne-grained
bin-level overlapping of communication with computation; 2) training over large graphs without
out-of-memory error as it supports swapping bins between CPU and GPU to relieve resource
constraints. Though such memory swapping comes with a throughput slowdown, we believe
it is necessary for the tradeo between memory constraint and training eciency. Overall, G3
outperforms all baselines, and the mean speedups over BNS-GCN and NeutronStar are 1.38×/1.20×
and 1.84×/1.89× for GraphSAGE/GAT training, respectively. G3 speeds up less with GAT because
of the higher computation workload in GAT and extra memory swapping overhead, as illustrated
in §7.1.

7.3 Time-to-Accuracy
In these experiments, we compare G3 with baselines in terms of time-to-accuracy. We conduct
experiments using G3, BNS-GCN, and NeutronStar over Ogbn-products and Amazon, and using
G3, DGL, and ClusterGCN over Ogbn-papers. We train GraphSAGE in all experiments in a 16-node
cluster, and record the test accuracy during training.

The results are shown in Figure 12. The dashed lines are the approximate nal accuracies that G3
achieves in each dataset, i.e., 70.5% for Ogbn-products, 62% for Amazon, and 40.5% for Ogbn-papers,
respectively.
As Figure 12a and 12b for small graphs show, three full-graph training systems all converge to

similar nal accuracy. But G3 converges fastest among the three, i.e., 1.8-2.3×, thanks to its higher
training throughput, which can be attributed to the balanced partition and multi-level pipelining.
As Figure 12c for the large graph shows, initially, ClusterGCN converges the fastest among

the three because it has no feature synchronization among workers, and hence has the minimal
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Fig. 12. Time-to-accuracy results over three datasets. G3 achieves 1.8-2.3× faster convergence speed than
full-graph baselines, and 6%-10.7% higher final accuracy than mini-batch baselines.
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systems. The peak/average GPU utilizations are
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(b) GPU utilization compared with other full-graph
systems. The peak/average GPU utilizations are
19%/5.4%, 78%/4.8%, and 8%/1.1% for G3, Neutron-
Star, and BNS-GCN, respectively.

Fig. 13. G3 achieves 5.5×/2.9× higher average GPU utilization than mini-batch/full-graph baselines.

epoch time (∼3.2 seconds). However, due to the lack of neighbor information from remote hosts
during training, ClusterGCN can only converge to as much as 29.8%. Afterward, we see no accuracy
improvement with more training epochs. DGL converges faster but can only converge to low
nal accuracy, i.e., ∼6% lower than the value G3 achieves. The faster convergence speed that DGL
achieves is due to the property of mini-batch training. Such paradigm updates the model during
every iteration, which is a higher update frequency than that of full-graph training that G3 adopts
(e.g., 75 vs. 1 in Ogbn-papers). As a result, the frequent update manner converges faster, but at the
cost of signicant nal accuracy loss due to the sampling in training (§2.3). For G3, it initiates the
slowest among all due to the property of full-graph training. But then it converges rapidly and
nally achieves the best accuracy thanks to its high eciency and full-graph training. Overall,
G3 achieves the best nal accuracy than DGL and ClusterGCN. The higher accuracy of G3 can
be attributed to the full-graph training adopted by G3 than the mini-batch training adopted by
DGL [18].

7.4 GPU Utilization
We report the GPU utilization of G3 compared with baselines when training GraphSAGE over
Ogbn-products in a 16-node cluster. We measure the GPU utilization every 10 milliseconds. We use
dierent initial bin size settings for G3 when compared to mini-batch and full-graph systems, as
specied in §7.1 and §7.2. The results in a ve-second window are shown in Figure 13.
As Figure 13a shows, we nd that G3 achieves both higher peak GPU utilization (49% vs. 15%)

and higher average GPU utilization (11.2% vs. 2%). Note that the small utilization value is due to
the sparse computations in GNN models that fail to leverage GPU eciency [11]. DGL achieves
lower GPU utilization because its sampling becomes the bottleneck and limits the GPU utilization,
as elaborated in §2.3. For G3, however, it remains high GPU utilization thanks to the balanced
workload across workers and the multi-level pipelining to exploit overlap opportunities.
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Fig. 15. G3 achieves beer throughput performance
when the number of features increases.

As seen in Figure 13b, NeutronStar has a higher peak GPU utilization compared to G3 and BNS-
GCN, but also experiences the most GPU idle time. This is because NeutronStar loads the entire
graph to GPU memory before processing, which leads to high GPU usage but more idle time (76.6%
of the time) waiting for communication. Additionally, NeutronStar uses libtorch instead of DGL to
implement GNN operators, which may also contribute to the dierence in peak GPU utilization.
BNS-GCN performs the worst peak and average GPU utilization due to the extra sampling steps
during training. Overall, G3 has the best average GPU utilization among all systems, with 2.9×
higher utilization on average than BNS-GCN and NeutronStar. As a result, G3 experiences almost
no GPU idle time during the time span. This is due to the balanced workload that eliminates
straggler issues and the multi-level pipelining that maximizes the overlap of communication and
computation.
We also observe that with a smaller initial bin size setting, G3 achieves better GPU utilization.

This is because, with a ner-grained bin packing, G3 can achieve better pipelining, but at the cost
of more CPU-GPU memory swapping. We leave the optimal bin size conguration that balances
the tradeo between the ne-grained pipelining and minimal memory swapping between CPU and
GPU as future work.

7.5 Impact of Layers
In this experiment, we compare G3 with DGL when training GraphSAGE with dierent numbers
of layers over four datasets in a 16-node cluster. We create three variants for each GNN model with
2, 3, and 4 layers. The sampling strategies for DGL are (25, 10), (25, 15, 10), and (25, 20, 15, 10) for
2-, 3-, and 4-layer models, respectively. We report the throughput speedup of G3 against DGL.

Figure 14 shows the results. We observe that the advantage of G3 over DGL increases drastically
with the number of layers when training over all datasets. Specically, G3 outperforms DGL by up to
25.9× in the 4-layer model. As elaborated in §2.3, DGL replicates all out-of-partition nodes for each
mini-batch, whose size grows exponentially with the number of layers. Therefore, the eciency
of DGL degrades drastically with the increasing number of layers. By comparison, G3 alleviates
duplicate computation and communication due to its hybrid parallelism design and thus shows a
greater advantage over DGL with deeper GNNs. Specically, G3 accelerates the training process
over the four datasets by 25.9×, 9.6×, 7.8×, and 22.0×, respectively. The signicant improvement of
G3 than DGL demonstrates the potential of G3 to support exploration for deeper and more complex
GNN models.

7.6 Impact of Input Features
In this experiment, we compare G3 and DGL using Amazon dataset with varying input feature
dimensions in a 16-node cluster. We train GraphSAGE on Amazon and vary the input feature
dimensions from 16 to 256.
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Figure 15 shows that G3 outperforms DGL in all dimensions and has a more graceful decrease
in throughput as the feature dimension increases. DGL’s heavy degradation in performance with
increased feature dimension (e.g., G3 outperforms DGL by 1.94× in a 256-dimensional graph) is due
to the increased redundant communication, while G3 eliminates this redundant communication
and uses multi-level pipeline scheduling to overlap computation and communication. We observe a
slight decrease in G3’s throughput when the input feature dimension increases from 128 to 256,
possibly due to the large communication volume not being fully overlapped. Overall, the results
demonstrate G3’s versatility over a wider range of graph datasets.

7.7 Microbenchmarks
Balanced Work Partitioning. We evaluate the eectiveness of G3’s locality-aware iterative
partitioning by replacing it in G3 with the following partitioning methods.
• Random. Nodes are assigned to partitions at random.
• Chunk-based [52]. Nodes are split into contiguous chunks, with each chunk representing a
partition.
• METIS [21]. A widely used graph partitioning library that generates partitions with minimum
edge-cuts.
• G3 with locality-aware iterative graph partitioning.
Figure 16 shows the training throughput using the above algorithms when the cluster scales

out. Algorithms such as random and chunk-based partitioning perform poorly as they do not take
into account all edges in the graphs. METIS and balanced partitioning, which aim to minimize
the number of edges across subgraphs, perform better. Balanced partitioning, in particular, by
balancing communication and computation workload, improves the straggler issue and is important
for multi-level pipeline scheduling (as discussed in §3.2). Overall, balanced partitioning leads to a
maximum 4.3× improvement in speed compared to other partition algorithms.
Multi-level Pipeline Scheduling. We evaluate the eectiveness of multi-level pipeline sched-

uling by performing experiments on the following variants of G3.
• Sequential. G3 with no inter- or intra-layer pipeline mechanism. All workers process computa-
tion and communication sequentially during training, which is the same manner as [13, 20]’s
bin-packing performs.
• Inter-layer. G3 that pipelines only across layers (§5.2). Each worker employs the inter-layer
pipeline but naively packs nodes with consecutive node IDs into bins.
• Intra-layer. G3 that pipelines only within the same layer (§5.2). Each worker waits for all
required intermediate results and employs the intra-layer pipeline with adaptive bin packing.
• G3 with the multi-level pipeline scheduling.
Figure 17 shows the training throughput of various G3 variants. The sequential method has the

lowest throughput. Intra-layer and inter-layer methods both improve through partial pipelining,
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with the intra-layer performing better, but this advantage decreases as the cluster size increases.
This is because (1) the initial bin size of 11 allows for more opportunities for intra-layer pipelining,
and (2) the inter-layer pipeline takes advantage of more network resources with a larger cluster size.
The multi-level pipeline scheduling in G3 provides the best scalability and can achieve a maximum
11.66× improvement in performance speed.

8 RELATEDWORK
GNN Frameworks. DGL [39, 50] supports distributed GNN training and is widely used in both
academia and industry. ROC [18] proposes online learning-based graph partitioning for a balanced
workload and uses dynamic programming for ecientmemorymanagement. NeuGraph [28] bridges
graph processing with DNN and support ecient multi-GPU training. However, these frameworks
suer from either layer-wise communication barriers or cross-partition neighbor replications, as
elaborated in §2.3. PyG [10], AliGraph [51], Euler [2], and AGL [49] adopts mini-batch training
with sampling, resulting in sub-optimal nal accuracy [18].
GNNTrainingOptimization.GNNAdvisor [41] presents optimizations such as workloadmanage-
ment and GPUmemory customizations. DGCL [5] proposes a communication planning algorithm to
optimize communication during training. PaGraph [27] proposes a caching policy that reduces data
movement between CPU and GPU for the frequently visited nodes. These works assume that graphs
are stored in one machine. BNS-GCN [34] advocates full-graph training and proposes a simple yet
eective sampling method to relieve the communication and memory overhead. PipeGCN [35]
defers the communication to the next iteration’s computation, which introduces staleness and
results in a lower theoretical convergence speed. Sancus [31] is also aware of embedding staleness
and uses historical embeddings with cache to avoid communications adaptively. SALIENT [19]
optimizes mini-batch training with a fast sampling approach, shared-memory parallelization, and
pipelining of batch transfer. Dorylus [32] adopts pipeline parallelism [17, 30] to maximize the
resource utilization in the serverless scenario. The above works may still potentially compromise
their nal accuracies. SAR [29] is a CPU-only GNN training system that proposes a distributed
sequential rematerialization scheme for ecient memory usage. It does not support GPU training.

9 CONCLUSION
This paper tackles the scalability challenge in distributed GNN training. We propose GNN hybrid
parallelism in G3 to scale out GNN training with carefully scheduled peer-to-peer intermediate
data sharing, enabling scalable GNN training on large graphs. G3 accelerates the training process
by balancing workload across workers with locality-aware iterative partitioning, and overlaps
communication with computation using amulti-level pipeline scheduling algorithm.We evaluate G3
with extensive experiments on large graphs, and the results demonstrate up to 2.24× improvement
in training throughput and better nal accuracy compared to previous systems in a 16-node cluster.
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