Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting

Yilun Jin¹, Kai Chen¹, Qiang Yang^{1, 2} ¹ HKUST, ² WeBank

Outline

- Background & Motivation
- Problem Definition
- Proposed Method: CrossTReS
- Experiments
- Conclusion

Background: Traffic Prediction

- Traffic Prediction
 - Forecasting future human flows, traffic speeds, travel demands, etc.

Traffic flow: How many cars passed the intersection?

Travel demand: How many taxis stopped for passengers?

Traffic speed: What is the average speed of this lane?

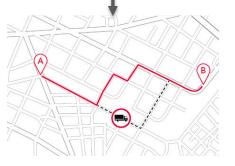
Background: Traffic Prediction

- Traffic Prediction
 - Forecasting future human flows, traffic speeds, travel demands, etc.
 - Foundations for smart transportation tasks, e.g. route planning, vehicle dispatching

Traffic flow: How many cars passed the intersection?

Travel demand: How many taxis stopped for passengers?

Traffic speed: What is the average speed of this lane?

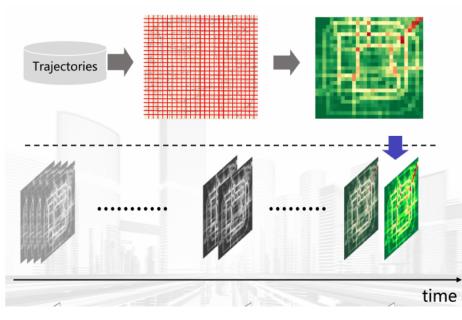


Route Planning

Taxi Dispatching

Background: Deep Learning for Traffic Prediction

- Deep learning models achieve success in traffic prediction.
 - e.g. CNN [Zhang et al. 2017], RNN [Yao et al. 2019b], GCN [Li et al. 2018],



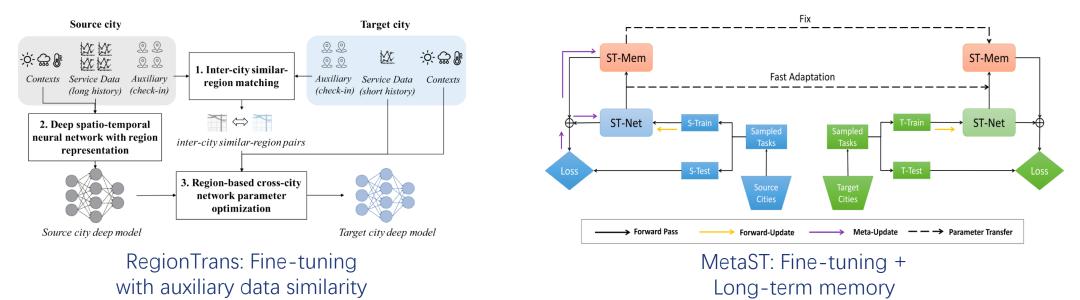
Example: CNN-based models

- Represent a city with grids
- Deep CNN models to learn spatio-temporal features.

- **Drawback:** Require large-scale traffic data (e.g. a year)
- **Question:** What if we only have limited data?
 - e.g. Under-developed cities.

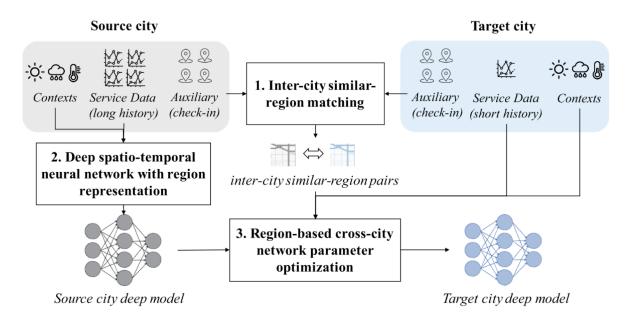
Background: Transfer Learning for Traffic Prediction

- Cross-city transfer learning for traffic prediction:
 - Transfers knowledge from data-rich cities to data-scarce cities.
 - Examples: RegionTrans [Wang et al. 2019], MetaST [Yao et al. 2019a]
 - Main Methods: Fine-tuning



Background: Fine-Tuning Solutions

- **Example:** RegionTrans [Wang et. al, 2019]
 - Step 1: Finding similar cross-city region pairs.
 - Step 2 (Source Training): Train the model on abundant data from source city.
 - Step 3 (Fine-Tuning): Fine-tune the model with target data & region similarity.



Motivation

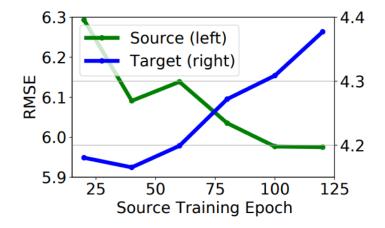
- **Common drawback** of fine-tuning-based methods:
 - Focus on designing novel fine-tuning methods.
 - Ignore the impact of source training: may learn irrelevant source knowledge.

• Our observation:

• Inadequate source training is **harmful**.

Motivation: Experiments

- Real-world taxi data
 - Source City: Chicago;
 Target City: Washington DC (7 days)
- Vary number of epochs for source training.
- Results:
 - More source training
 - → Lower source error
 - → Higher target error.
 - Source training learns harmful knowledge!



(a) Supervised Source Training

Problem Definition

- **Goal:** Selective Transfer Learning
 - Select relevant knowledge, rule out harmful knowledge.
- How?
 - **Common Practice:** Divide cities to regions [Wang et al. 2019]
 - We select knowledge by **re-weighting regions**.
 - Advantages:
 - Better transfer learning performance.
 - Better interpretability (by visualization).

Problem Definition

• When?

• Selective Source Training:

Source knowledge is learned during source training, not fine-tuning.

• Problem Definition:

- For each region r_s in the source city S, learn weights $\lambda_{r_s} > 0$, such that after
 - 1. Source training with weights $\lambda_{r_s} > 0$, and
 - 2. Target fine-tuning,

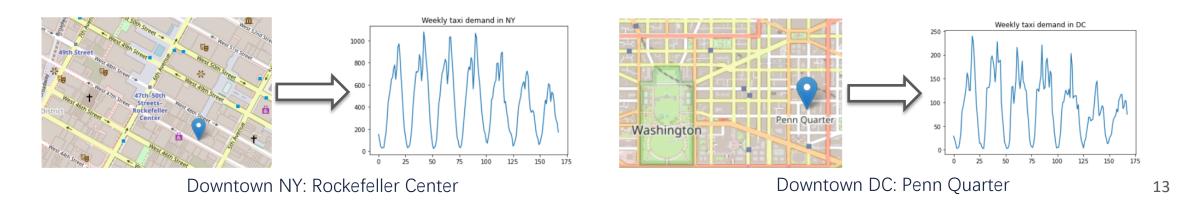
error on the target city is minimized.

Proposed Work

- CrossTReS (<u>Cross</u>-City <u>Transfer Learning with Region Selection</u>)
 - **General** framework for selective source training.
 - **Agnostic** to fine-tuning methods.
 - Up to **8% error reduction** on real-world taxi and bike datasets.
 - Interpretable cross-city knowledge transfer.

Main Ideas

- Idea 1: Regional urban features shed light on traffic patterns.
 - e.g. Industrial areas → morning and evening rush hours
 Business centers → traffic flows peak during weekends
 - Cross-city regions with similar features \rightarrow similar traffic patterns.
 - **Challenge 1:** How to learn generalizable region features in both cities?

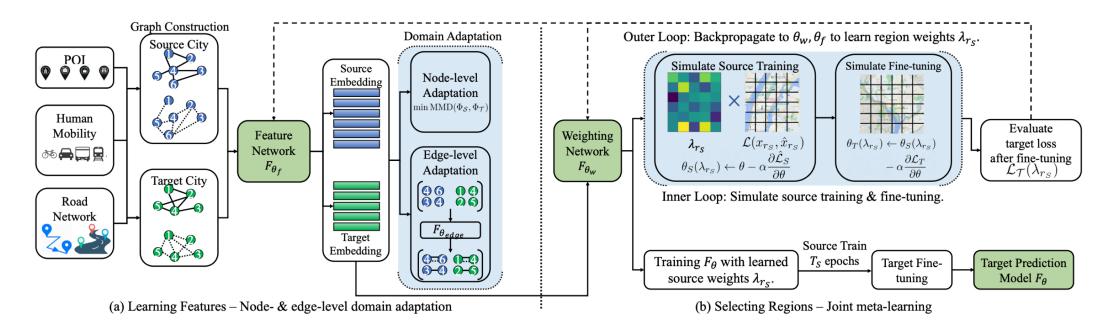


Main Ideas

- Idea 2: 'Helpful' source regions should be assigned high weights, and vice versa.
 - e.g. Target city enjoys smooth traffic flows → Source regions with heavy congestion should be given low weights.
 - **Challenge 2:** How to quantify such 'helpfulness' ?

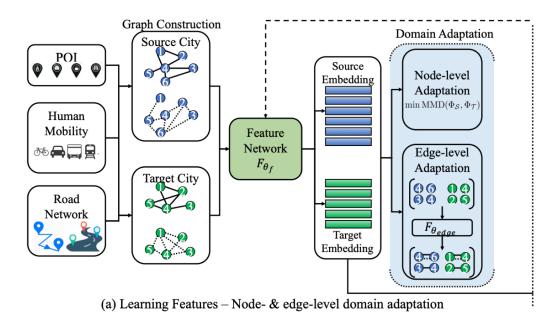
Components

- Feature network F_{θ_f} : Graph-based models to learn region features
- Weighting network F_{θ_w} : Learns weights λ_{r_s} for source regions
- Prediction model F_{θ} : Performs traffic prediction.



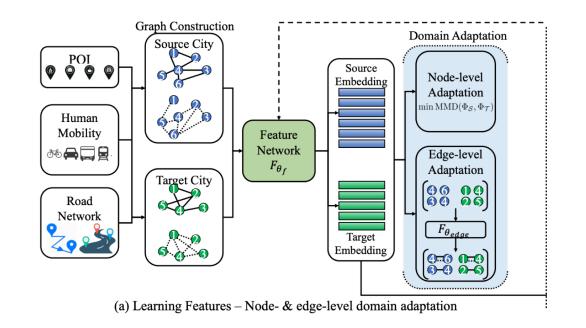
Learning Generalizable Region Features

- Regional Feature Learning
 - **Common Practice:** Build multi-view graphs within a city [Zhang et al. 2020]
 - Nodes (regions) linked by various relations, e.g. similar POI, similar human mobility, road connections, etc.
 - **City-specific**: only reflects intra-city relations.
- Generalizable Region Feature Learning
 - **Goal**: Similar regions across cities have similar features.
 - How?
 - Node and edge-level domain adaptation



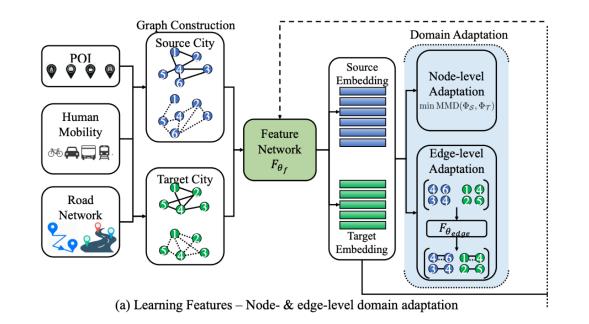
Learning Generalizable Region Features

- Node-level:
 - Maximum mean discrepancy (MMD)
 - Aligns distribution of node features.
- Edge-level:
 - Intuition: Use edge types to link cities.
 - Different types of edges → separable edge features.
 - 2. Different cities, same edge types →
 similar edge features
 - Method: Shared edge classifier.



Learning Generalizable Region Features

- Edge classifier $F_{\theta_{edge}}$:
 - Input: edge features (concat. of node features)
 - Predict: edge type (Intuition 1)
 - Shared between source & target cities (Intuition 2)



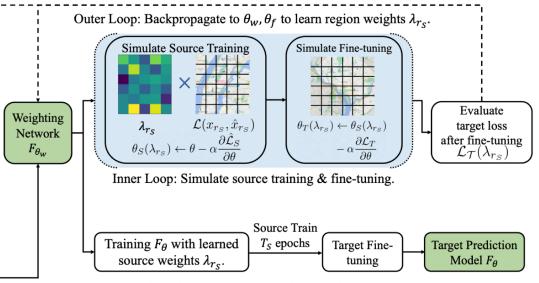
Quantifying Helpfulness of Source Regions

• Intuition:

- After selective source training with λ_{r_s} and fine-tuning, target error is low.
- Solution:

Source-target joint meta-learning

- 1. Simulate source training: K_S steps of SGD on prediction model θ with source data X_S and weights λ_{r_S} .
- 2. Simulate fine-tuning: K_T steps of SGD on θ with target data X_T .
- 3. Optimize weights: Compute loss on X_T . Backpropagate to θ_f , θ_w to optimize λ_{r_s}



(b) Selecting Regions – Joint meta-learning

Overall Algorithm

- Source Training (Lines 2-8):
 - Train feature and weighting network to adjust weights (Lines 3-4).
 - Selectively train on source data (Line 5-6).
- Fine-tuning (Lines 9-12)
 - Agnostic to fine-tuning methods, e.g.
 Naïve fine-tuning, RegionTrans, etc.

Algorithm 1 Selective Cross-City Transfer Learning for Traffic Prediction with CrossTReS **Input**: Source and target traffic data X_S, X_T , Multi-view urban data $\{\mathcal{G}_v^C\}, v \in \{prox, road, poi, s, d\}, C \in \{\mathcal{S}, \mathcal{T}\},\$ **Output**: A deep prediction model θ_T for TRegion Feature 1: Set $s_{epoch} = 0$, $tune_{epoch} = 0$. Learning 2: while s epoch $< T_s$ do Train feature network θ_f via Eqn. 11 3: Joint Meta-Train $\theta_s = \{\theta_f, \theta_w\}$ via Eqn. 12, 13, and 14. 4: Learning Obtain source weights λ_{rs} . 5: Train θ on source data χ_{S} via Eqn. 5 with weights λ_{rs} . 6: s epoch = s epoch + 1.end while 9: while tune epoch $< T_{tune}$ do Train model θ on target data $X_{\mathcal{T}}$. 10: $tune_epoch = tune_epoch + 1.$ 11: 12: end while 13: **return** Trained model $\theta_{\mathcal{T}}$.

Experiments

- Datasets: Taxi & Bike data, pickup & dropoff
- Source Cities: New York (NY), Chicago (CHI) Target City: Washington (DC)
- Base Model: ST-Net [Yao et al. 2019b]
- Data Amount:
 - Source: 1 year; Target: 30, 7, 3 days

Result Highlights:

- Up to **8% error reduction** compared to SOTA baselines.
- **Good compatibility** with general fine-tuning methods.
- Source region weights λ_{r_s} provide interpretable visualizations.

Quantitative Results: Bike

Target Data	30 Days		7 Days		3 Days	
Method/ Source City	NY	СНІ	NY	СНІ	NY	СНІ
ARIMA	3.44		3.46		3.48	
ST-Net	2.49		2.73		3.14	
Best Transfer	2.293	2.339	2.453	2.529	2.535	2.653
CrossTReS	2.187	2.244	2.300	2.349	2.397	2.449
CrossTReS-RT	2.177	2.211	2.315	2.315	2.377	2.419
CrossTReS-Mem	2.179	2.231	2.299	2.313	2.391	2.414

- CrossTReS-RT and –Mem use RegionTrans and STMem [Yao et al. 2019] for fine-tuning.
- Metric: RMSE.

Quantitative Results: Taxi

Target Data	30 Days		7 Days		3 Days	
Method/ Source City	NY	СНІ	NY	СНІ	NY	СНІ
ARIMA	5.18		5.19		5.20	
ST-Net	4.85		5.74		6.83	
Best Transfer	4.097	4.077	4.411	4.347	4.672	4.544
CrossTReS	3.885	3.869	4.056	4.031	4.326	4.271
CrossTReS-RT	3.880	3.867	4.052	4.064	4.230	4.235
CrossTReS-Mem	3.883	3.873	4.053	4.048	4.211	4.241

- CrossTReS reduces error by **up to 8%**.
- CrossTReS is compatible with general fine-tuning methods, e.g. –RT, -Mem.

Model Analysis: Region Feature Learning

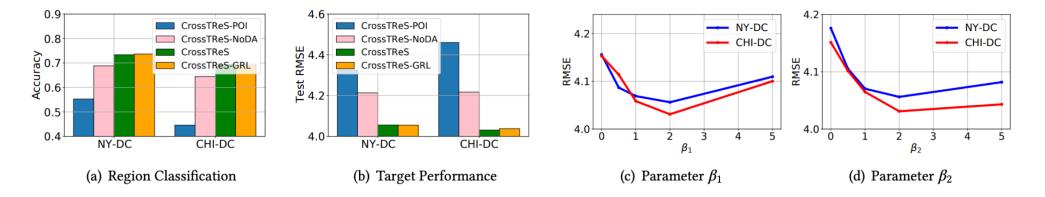


Figure 3: Analysis results on node- and edge-level domain adaptations for spatial feature learning.

- With learned region features and domain adaptation, CrossTReS achieves the best results.
- Removing either level of domain adaptation ($\beta_1 = 0$ or $\beta_2 = 0$) leads to larger error.

Model Analysis: Joint Meta-Learning

- Removing the weighting network θ_w leads to larger error.
- The additional simulation of target fine-tuning $(K_T = 1)$ leads to better knowledge transfer.

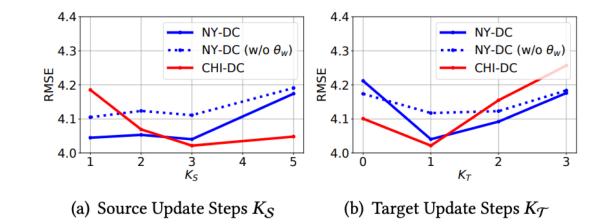


Figure 4: Analysis results on the joint meta-learning for region re-weighting.

Case Study: Visualization

- For the NY-DC transfer learning task, CrossTReS selects Manhattan over Bronx, Queens, and Brooklyn.
- Indeed, DC is most similar to Manhattan:
 - High economic development.
 - Popular tourist destinations.

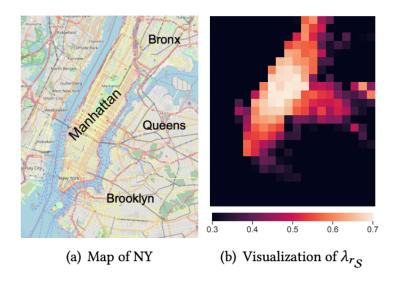


Figure 6: Visualization of source region weights λ_{r_S} over NY.

Conclusion

- CrossTReS: **selective transfer learning** for traffic prediction.
 - Selects helpful source regions to improve target fine-tuning.
 - Learns generalizable region features via **bi-level domain adaptation**.
 - Re-weights source regions via **joint meta-learning**.
 - Achieves up to 8% error reduction and interpretable visualization on realworld data.

Reference

- Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. ICLR 2018
- Zhang, J., Zheng, Y., & Qi, D. (2017). Deep spatio-temporal residual networks for citywide crowd flows prediction. In Thirty-first AAAI conference on artificial intelligence.
- Yao, H., Tang, X., Wei, H., Zheng, G., & Li, Z. (2019). Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 5668-5675).
- Wang, L., Geng, X., Ma, X., Liu, F., & Yang, Q. (2019). Cross-city transfer learning for deep spatio-temporal prediction. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (pp. 1893-1899).
- Yao, H., Liu, Y., Wei, Y., Tang, X., & Li, Z. (2019). Learning from multiple cities: A meta-learning approach for spatial-temporal prediction. In The World Wide Web Conference (pp. 2181-2191).
- Zhang, M., Li, T., Li, Y., & Hui, P. (2020). Multi-view joint graph representation learning for urban region embedding. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence (pp. 4431-4437).
- Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning (pp. 1126-1135). PMLR.

Project: https://turing.ust.hk/

Author: <u>https://kl4805.github.io/</u> yilun.jin@connect.ust.hk