
Transferable Graph Structure Learning for Graph-based Traffic
Forecasting Across Cities

Yilun Jin

Hong Kong University of Science and

Technology

Hong Kong SAR, China

yilun.jin@connect.ust.hk

Kai Chen

Hong Kong University of Science and

Technology

Hong Kong SAR, China

kaichen@cse.ust.hk

Qiang Yang

Hong Kong University of Science and

Technology

Hong Kong SAR, China

WeBank

Shenzhen, China

qyang@cse.ust.hk

ABSTRACT
Graph-based deep learning models are powerful in modeling spatio-

temporal graphs for traffic forecasting. In practice, accurate fore-

casting models rely on sufficient traffic data, which may not be

accessible in real-world applications. To address this problem, trans-

fer learning methods are designed to transfer knowledge from the

source graph with abundant data to the target graph with limited

data. However, existing methods adopt pre-defined graph structures

for knowledge extraction and transfer, whichmay be noisy or biased

and negatively impact the performance of knowledge transfer. To

address the problem, we propose TransGTR, a transferable structure

learning framework for traffic forecasting that jointly learns and

transfers the graph structures and forecasting models across cities.

TransGTR consists of a node feature network, a structure generator,

and a forecasting model. We train the node feature network with

knowledge distillation to extract city-agnostic node features, such

that the structure generator, taking the node features as inputs, can

be transferred across both cities. Furthermore, we train the struc-

ture generator via a temporal decoupled regularization, such that

the spatial features learned with the generated graphs share similar

distributions across cities and thus facilitate knowledge transfer

for the forecasting model. We evaluate TransGTR on real-world

traffic speed datasets, where under a fair comparison, TransGTR

outperforms state-of-the-art baselines by up to 5.4%.

CCS CONCEPTS
• Computing methodologies → Transfer learning; • Informa-
tion systems→ Spatial-temporal systems.

KEYWORDS
Traffic Forecasting, Transfer Learning, Graph Structure Learning

ACM Reference Format:
Yilun Jin, Kai Chen, and Qiang Yang. 2023. Transferable Graph Structure

Learning for Graph-based Traffic Forecasting Across Cities. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599529

(KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3580305.3599529

1 INTRODUCTION
Traffic forecasting is a fundamental problem for a variety of smart

city applications. Accurately forecasting future traffic conditions

serves as the foundation of numerous smart city services, such as

trip planning [21, 23, 34], resource management [5, 45, 48], accident

prediction [13, 46], etc. Traffic data can be generally modeled as

spatio-temporal graphs, where sensors correspond to nodes and the

dependencies between nodes correspond to edges. Therefore, with

the success of learning on graphs [11, 20, 36], many deep learning

models are proposed to solve the problem of traffic forecasting

and have achieved state-of-the-art performances, such as spatio-

temporal graph neural networks (STGNN) [1, 22, 40, 44]. However,

the success of these models relies on large-scale traffic data, which

may be inaccessible in real-world applications. For example, it takes

a long time for newly-deployed sensors to collect large-scale data,

during which the quality of smart city services may be unsatisfac-

tory. Therefore, enhancing the performance of graph-based traffic

forecasting under insufficient data is of pressing importance.

To address the data scarcity problem, researchers propose trans-

fer learning [29] methods for traffic forecasting, aiming to transfer

knowledge from a city with abundant data (i.e. the source city) to
one with insufficient data (i.e. the target city). Among them, Re-

gionTrans, MetaST, and CrossTReS [19, 37, 42] focus on grid-based

data, where a city is divided into grids with fixed sizes and spatial

relations. However, grid-based data fail to describe spatio-temporal

graphs with irregular and flexible node-wise connections, and thus,

these methods are not compatible with graph-based traffic fore-

casting. To complement the drawback, ST-GFSL [27] and DASTNet

[33] are proposed to transfer knowledge for graph-based traffic

forecasting. They propose meta-learning and domain adaptation

methods to bridge the common knowledge between cities and use it

to enhance the forecasting performance in the target city. However,

a common drawback of ST-GFSL and DASTNet is that both methods

directly adopt pre-defined graph structures for knowledge extrac-

tion and transfer. In practice, the pre-defined graph structures are

handcrafted with rules, and may thus be noisy, missing, or biased,

which may negatively impact knowledge transfer between cities.

We perform experiments on real-world traffic datasets, METR-

LA (source) and PEMSD7M (target) [17] to illustrate the drawback

of using pre-defined graphs for knowledge transfer. We augment

the graph structures of both cities via the triadic closure rule [26, 49].

https://orcid.org/0000-0002-9502-7622
https://orcid.org/0000-0003-2587-6028
https://orcid.org/0000-0001-5059-8360
https://doi.org/10.1145/3580305.3599529
https://doi.org/10.1145/3580305.3599529

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yilun Jin, Kai Chen, and Qiang Yang

0 20 40
% Source Edge Augmentation

5.25

5.30

5.35

R
M
SE

RMSE (Left)
MAE (Right)

2.72

2.74

2.76

2.78

2.80

M
A
E

(a) Augmenting the Source Graph

0 20 40
% Target Edge Augmentation

5.25

5.30

5.35

R
M
SE

RMSE (Left)
MAE (Right)

2.74

2.76

2.78

2.80

M
A
E

(b) Augmenting the Target Graph

Figure 1: Forecasting RMSE and MAE on PEMSD7M (target)
with different ratios of edge augmentation on METR-LA
(source) and PEMSD7M (target) graph structures. 0 denotes
the original graph structures. For source augmentation, the
target graph structure is kept unchanged, and vice versa.
DASTNet [33] is applied for knowledge transfer.

We connect top-𝑘% node pairs with the most common neighbors

in both graphs, and apply DASTNet [33] to transfer knowledge

between the augmented graphs. We vary the ratio 𝑘 on both source

and target graphs and plot the performances (average RMSE/MAE

over 12 horizons) on PEMSD7M in Fig. 1. As shown, augmenting

either the source (Fig. 1(a)) or the target graph (Fig. 1(b)) leads to

lower errors (up to 2.4%) compared to directly using pre-defined

graphs. The results suggest that the pre-defined graph structures,

either the source or the target, may not be optimal for knowledge

transfer for graph-based traffic forecasting, and that it is crucial

to study transferable graph structure learning, i.e. training a struc-
ture generator to learn graph structures, and transferring both the

generator and the forecasting model across cities. By doing so, we

observe two opportunities. On one hand, the structure generator

transferred from the source city is enriched with source knowledge,

and thus, it can better identify helpful node-wise dependencies and

learn a more effective target graph. On the other hand, by jointly

learning graph structures for both cities, we can narrow the dis-

crepancy between source and target data distributions and facilitate

knowledge transfer for the forecasting model.

The problem of learning graph structures jointly with traffic

forecasting models has been widely studied. Specifically, as long-

term temporal patterns reveal node-wise similarity, researchers

extract node features from long-term traffic data (e.g. weeks or

months) and feed them to the structure generator to learn the

graph [4, 30, 31]. However, existing works jointly learn the structure

generator and forecasting model in one city with rich traffic data,

while we aim to transfer both the generator and the forecasting

model across cities. Moreover, no long-term traffic data is available

in the target city. Therefore, two challenges arise.

• Learning city-agnostic node features for transferable
structure generators. As inputs of the structure genera-
tor, city-agnostic node features must be learned before the

source structure generator can be transferred to the target

city. However, while long-term data is available in the source

city, only short-term data exists in the target city. Therefore,

long-term features such as periodicity and trends cannot be

adequately learned in the target city, leading to a discrepancy

between node features in both cities.

• Learning graph structures for transferable forecasting
models across cities. Existing works learn graph structures

to optimize forecasting performance in a single city. How-

ever, as the data distributions across cities are different [19],

the graph structure thus learned may lead to a forecasting

model with city-specific knowledge that is not transferable

to another city. Furthermore, as graphs are discrete and ir-

regular data, it is hard to evaluate their distributions or to

minimize the distances between them.

In this paper, we propose TransGTR (Transferable Graphs for
Traffics), a transferable graph structure learning framework for

graph-based traffic forecasting across cities. TransGTR consists of

three main components, a node feature network 𝑓𝜃𝑛𝑓 , a structure

generator 𝑓𝜙 , and a forecasting model 𝑓𝜃 . To learn a transferable

structure generator, we train the node feature network 𝑓𝜃𝑛𝑓 by dis-

tilling long-term knowledge from source data to short-term target

data. Thus, target node features are enriched with source knowl-

edge and generalizable with source node features, and the structure

generator learned upon them can be transferred between cities. To

further learn a transferable forecasting model, we jointly train the

structure generator 𝑓𝜙 and the forecasting model 𝑓𝜃 with a temporal

decoupled regularization. Specifically, by viewing graph structures

as spatial feature extractors [38], we regularize 𝑓𝜙 , 𝑓𝜃 such that the

spatial features extracted with them follow similar distributions in

both cities and are thus transferable. We further separate temporal

dynamics from spatial features to reduce the variance of the regu-

larization. We conduct extensive experiments on real-world traffic

datasets, where under a fair comparison, TransGTR achieves an

improvement of up to 5.4% compared to state-of-the-art baselines.

To summarize, we make the following contributions.

• To the best of our knowledge, this is the first attempt to

study the problem of transferable graph structure learning

for graph-based traffic forecasting.

• We propose TransGTR, a transferable graph structure learn-

ing framework for traffic forecasting. With the city-agnostic

node features and the temporal decoupled regularization,

TransGTR jointly learns transferable structure generators

and forecasting models across cities to improve the forecast-

ing performance in the target city with limited data.

• We perform experiments on real-world graph-based traffic

speed datasets where TransGTR outperforms state-of-the-art

baselines by as much as 5.4%.

2 RELATEDWORK
2.1 Graph-based Traffic Forecasting
Spatio-temporal graphs are natural representations of traffic data,

where nodes represent sensors with their time series, and edges

between nodes depict dependencies between sensors (e.g. spatial

closeness). To solve the graph-based traffic forecasting problem,

many deep forecasting models have been proposed, such as spatio-

temporal graph neural network (STGNN) models. STGNNs com-

monly apply sequential models (e.g. causal convolutions or recur-

rent neural networks (RNN)) to capture temporal features from indi-

vidual time series, and apply graph neural networks (e.g. graph con-

volutional network (GCN) [20], graph attention network (GAT) [36],

Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities KDD ’23, August 6–10, 2023, Long Beach, CA, USA

etc.) to aggregate features from related time series [9, 18, 22, 40, 44].

However, despite being powerful with rich traffic data, STGNN

models fail to make accurate forecasting without sufficient training

data, which is the problem we aim to address in this paper.

2.2 Structure Learning for Traffic Forecasting
A graph structure that faithfully depicts dependencies between

nodes is crucial to accurate traffic forecasting. However, pre-defined

graph structures are often handcrafted with heuristics (e.g. spatial

distance) and thus may contain bias and noise and compromise the

performance of forecasting. To address the issue, structure learning

methods are proposed for traffic forecasting aiming to learn more

reliable dependencies between nodes. Existing works on structure

learning [4, 30, 39] generally extract features from very long-term

traffic data to generate the graph and optimize it jointly with the

forecasting model. Empirically, structure learning has been shown

effective for a wide range of forecasting tasks [51]. Different from

existing works that learn the graph structure in a single city, we

aim to learn graph structures that encode transferable knowledge

across cities, with the target city having only short-term data.

While the above works focus on learning a time-invariant graph
structure for all time steps, there are also works that learn time-
dependent graph structures for different time steps [12, 31, 43].

However, these methods commonly require much more parameters

to learn evolving graph structures, which are prone to overfitting

in a target city with limited data. Therefore, we focus on learning

transferable time-invariant graph structures in this paper.

2.3 Transfer Learning for Traffic Forecasting
Data insufficiency is a common problem in real-world traffic fore-

casting tasks. For example, for newly deployed traffic speed sensors,

it takes a long time to accumulate large-scale traffic data, during

which many smart city services may be compromised. To address

the problem, transfer learning methods have been proposed for traf-

fic forecasting. Among them, RegionTrans, MetaST, and CrossTReS

[19, 37, 42] aim to transfer knowledge for grid-based data, and are

thus not optimal for graph-based traffic data. On the contrary, ST-

GFSL [27] and DASTNet [33] are designed for graph-based traffic

data. They apply hypernetworks [10], meta-learning [7, 27], and

domain adaptation [8] to extract common knowledge to improve

forecasting in the target city. However, both ST-GFSL and DAST-

Net apply the pre-defined graph structures to extract and transfer

knowledge, which, as shown in Fig. 1, is generally not optimal.

3 PRELIMINARIES & PROBLEM DEFINITION
In this section, we first introduce the necessary backgrounds and

notations, and then formally define our problem of transferable

structure learning for traffic forecasting.

3.1 Background and Notations
Definition 1 (Graph-based Traffic Data). We define a graph-

based traffic dataset as D = (V,X,A), whereV is the set of nodes
(e.g. sensors), X ∈ R |V |×𝑇 is the matrix for time series data (e.g.
traffic speed, car flow, etc.), 𝑇 is the total number of time steps, and
A ∈ [0, 1] |V |×|V | is the adjacency matrix depicting the dependencies
between nodes. We denote the time series data of node 𝑣 as x𝑣 ∈ R𝑇 .

Definition 2 (Transfer Learning for Traffic Forecasting).

Given a source city with graph-based traffic dataDS = (VS,XS,AS)
and a target city with data DT = (VT ,XT ,AT), 𝑇T ≪ 𝑇S , we aim
to learn a forecasting model 𝑓𝜃 with target data and rich source data[

X̂𝑡+1
T , . . . , X̂𝑡+𝑘𝑜

T

]
= 𝑓𝜃

([
X𝑡−𝑘𝑖+1
T , . . . ,X𝑡

T

]
,AT ;XS,AS

)
, (1)

to minimize the following error

LT =
∑︁
𝑣∈VT

𝑇T−𝑘𝑜∑︁
𝑡=𝑘𝑖

𝑘𝑜∑︁
𝑗=1

L𝑒𝑟𝑟

(
x̂𝑡+𝑗𝑣 , x𝑡+𝑗𝑣

)
, (2)

where 𝑘𝑜 , 𝑘𝑖 are the forecasting and the input horizons, respectively,
and L𝑒𝑟𝑟 is an error function such as squared error or absolute error.

3.2 Motivation and Problem Definition
Existing works such as DASTNet [33] and ST-GFSL [27] focus on

the problem of Def. 2. They extract knowledge from source data

XS,AS , such as well-trained forecasting model parameters, and

transfer them to the target data XT ,AT to improve forecasting per-

formance. However, both methods use the pre-defined graph struc-

tures AS,AT to extract and transfer knowledge. In practice, the

pre-defined graphs may be noisy, missing, or contain city-specific

heuristics. As a result, the knowledge, such as the forecasting model

learned from the pre-defined graph structures, may also inherit the

noise or city-specific heuristics, which negatively impacts knowl-

edge transfer across cities, as shown in Fig. 1.

Based on the above observation, we define the problem of trans-

ferable structure learning for traffic forecasting as follows.

Definition 3 (Transferable Structure Learning for Traf-

fic Forecasting). Given a source city and a target city with graph-
based traffic data DS = (VS,XS,AS) and DT = (VT ,XT ,XT),
𝑇T ≪ 𝑇S , we aim to jointly learn a structure generator 𝑓𝜙 and a
forecasting model 𝑓𝜃 ,

ÂS (𝜙), ÂT (𝜙) = 𝑓𝜙 (XS,XT)[
X̂𝑡+1
T , . . . , X̂𝑡+𝑘𝑜

T

]
= 𝑓𝜃

([
X𝑡−𝑘𝑖+1
T , . . . ,X𝑡

T

]
, ÂT (𝜙),XS, ÂS (𝜙)

)
,

(3)

such that error on the target city LT (Eqn. 2) is minimized.

Different from Def. 2, the problem of Def. 3 learns and trans-

fers both the forecasting model 𝑓𝜃 and the structure generator

𝑓𝜙 , which leads to two potential advantages. On one hand, the

structure generator 𝑓𝜙 is trained with both target data and rich

source data, thus providing additional knowledge to identify help-

ful edges and learn a better target graph. On the other hand, by

learning both graphs ÂS (𝜙) and ÂT (𝜙), we can minimize the dis-

crepancy between source and target data distributions (XS, ÂS (𝜙))
and (XT , ÂT (𝜙)) and thus learn the forecasting model with more

transferable knowledge and better target forecasting performance.

4 PROPOSED METHOD
In this section, we introduce the proposed framework, TransGTR.

We first present an overview of TransGTR, before introducing de-

tailed components and the training process.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yilun Jin, Kai Chen, and Qiang Yang

Fri Sat

Relative Position Encoding

Transformer Encoders

Sequence Features

Fri Sat

Sample Sub-sequence

Relative Position Encoding

Absolute Day-in-week
Encoding

Transformer Encoders

Long-term Sequence x Short-term Sequence x’

Minimize Feature
Distance !"#$%#&

SS,0 ST,0

Weights Shared

Temporal
Layer

Temporal
Layer

Spatial Layer Spatial Layer

'× Decoupling
Module)"*+

SS, m

HS, m

ST, m

HT, m

Minimize
Forecasting

Error !,

Minimize Decoupled
Regularization

!"*+-*.

Source Data
Sample

Target Data
Sample

Trained Node Feature
Network /012

Forecasting
Model /0

(a) Learning Node Features with Knowledge Distillation (b) Learning Graph Structures with Decoupled Regularization

GS

Structure
Generator /3

Structure
Generator /3

Node Feature
Network /012

GT

Figure 2: Overview of TransGTR with a node feature network 𝑓𝜃𝑛𝑓 (red), a structure generator 𝑓𝜙 (green), and a forecasting
model 𝑓𝜃 (blue). The node feature network learns city-agnostic node features with knowledge distillation, such that knowledge
encoded in the structure generator can be transferred across cities. To further learn forecasting models with transferable
knowledge, the structure generator is trained by minimizing the distance between spatial features from both cities.

4.1 Overview of TransGTR
The key challenges to transferable graph structure learning are

two-fold. First, we should learn city-agnostic node features from

long-term source data and short-term target data to learn a transfer-

able structure generator. Second, we should learn graph structures

for both cities to minimize the discrepancy between their data distri-

butions, thus learning a transferable forecasting model. To address

both challenges, TransGTR consists of three main components.

• Node Feature Network 𝑓𝜃𝑛𝑓 . As inputs to the structure gen-

erator, city-agnostic node features must be learned such that

the structure generator 𝑓𝜙 can be transferred across cities.

However, a discrepancy may exist between node features

learned from long-term source data and short-term target

data. To mitigate the issue, 𝑓𝜃𝑛𝑓 is trained with long-term

temporal knowledge distilled from the source city.

• Structure generator 𝑓𝜙 . Given city-agnostic node features

from 𝑓𝜃𝑛𝑓 , 𝑓𝜙 generates graph structures ÂS (𝜙), ÂT (𝜙) for
both cities. To facilitate learning transferable forecasting

models, we view graph structures as spatial feature extrac-

tors and learn 𝑓𝜙 with a temporal decoupled regulariza-

tion, such that spatial features extracted with ÂS (𝜙), ÂT (𝜙)
share similar distributions and are thus transferable. In ad-

dition, we separate temporal dynamics from the spatial fea-

tures such that the variance of the spatial features is reduced,

and the regularization is less noisy.

• Forecasting Model 𝑓𝜃 . It takes the learned graph structures

ÂS (𝜙), ÂT (𝜙) and outputs forecasting results.

We illustrate the framework of the proposed TransGTR in Fig. 2.

4.2 TransGTR Components
4.2.1 Node Feature Network 𝑓𝜃𝑛𝑓 . The purpose of 𝑓𝜃𝑛𝑓 is to cap-

ture city-agnostic node features across source and target cities

upon which 𝑓𝜙 can be learned with knowledge from both cities. As

long-term temporal features have been widely used to learn graph

structures for traffic forecasting [4, 30], we use the TSFormer model

[31], designed to capture long-term features from time series, as

𝑓𝜃𝑛𝑓 . Given an input sequence x ∈ R𝐿 ·𝑃 , TSFormer first splits x
into patches of length 𝑃 and projects them into patch embeddings

x𝑒𝑚𝑏 ∈ R𝐿×𝑛𝑒𝑚𝑏
. Then, x𝑒𝑚𝑏 is added with a relative and trainable

positional encoding pe𝑟𝑒𝑙 ∈ R𝐿×𝑛𝑒𝑚𝑏
and fed into a series of Trans-

former encoder blocks [35]. We denote the outputs of the encoder

as x𝑒𝑛𝑐 ∈ R𝐿×𝑛𝑒𝑚𝑏 = 𝑓𝜃𝑛𝑓 (x). We refer readers to [31] for details

regarding TSFormer. We also note that TransGTR is compatible

with other Transformer-based models for time series.

Enhancingweekly periodicity with day-in-week encodings. Weekly

periodicity is a common long-term property in traffic data. For ex-

ample, slow traffic speeds can often be observed during rush hours

on weekdays, but not on weekends. However, while the source

city contains rich data from which periodicity can be learned, only

short-term (e.g. several days) data is accessible in the target city.

Therefore, it is difficult to learn node features for the target city

that reflect temporal periodicity, and thus, the node features in the

target city may not be generalizable with those in the source city.

To mitigate the issue, we propose to add another positional en-

coding module, an absolute day-in-week encoding e𝑑𝑖𝑤 ∈ R7×𝑛𝑒𝑚𝑏

to the node feature network 𝑓𝜃𝑛𝑓 . Specifically, for all patches in the

input sequence x, we obtain their day-in-week information and ag-

gregate them into t𝑑𝑖𝑤 ∈ [1, . . . , 7]𝐿1. The day-in-week encodings

for the input x are then obtained via an embedding lookup

pe𝑑𝑖𝑤 (x) = e𝑑𝑖𝑤 [t𝑑𝑖𝑤], (4)

which are then added to the patch embeddings x𝑒𝑚𝑏 and the relative

positional encodings pe𝑟𝑒𝑙 , and fed into the Transformer encoders.

1
If a patch spans across two days, its day-in-week is determined via majority voting.

Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities KDD ’23, August 6–10, 2023, Long Beach, CA, USA

4.2.2 Structure Generator 𝑓𝜙 . The structure generator 𝑓𝜙 takes the

node features learned by 𝑓𝜃𝑛𝑓 , i.e.

GS = 𝑓𝜃𝑛𝑓 (XS),GT = 𝑓𝜃𝑛𝑓 (XT), (5)

and transforms them into graph structures ÂS (𝜙), ÂT (𝜙) for both
cities. By doing so, 𝑓𝜙 is learned with both target data and abundant

source data, and can thus better identify helpful edges from noisy

ones. TransGTR does not assume specific architectures for 𝑓𝜙 . We

refer readers to Appendix Section C for our implementation.

4.2.3 Forecasting Model 𝑓𝜃 . Given input data [X𝑡−𝑘𝑖+1, . . .X𝑡] and
the graph structure Â(𝜙) given by 𝑓𝜙 , the forecastingmodel 𝑓𝜃 trans-

forms them into predictions [X̂𝑡+1, . . . X̂𝑡+𝑘𝑜]. Similarly, TransGTR

does not require specific forecasting models. We generally assume

that 𝑓𝜃 consists of𝑀 stacked spatial and temporal layers, i.e.

H𝑚 = TemporalLayer𝑚 (S𝑚−1),
S𝑚 = GNNLayer𝑚 (H𝑚, Â(𝜙)),𝑚 = 1, . . . 𝑀,

(6)

whereH𝑚, S𝑚 stand for the temporal and spatial features at layer𝑚,

respectively, and S0 = [X𝑡−𝑘𝑖+1, . . . ,X𝑡] is the input time series. Fi-

nally, a regressor transforms S𝑀 to [X̂𝑡+1, . . . , X̂𝑡+𝑘𝑜] as the predic-
tion. The formulation in Eqn. 6 subsumes a wide variety of STGNN

models, such as STGCN, DCRNN, GraphWaveNet [22, 40, 44], etc.

4.3 Transferable Structure Learning with
TransGTR

In this section, we introduce how TransGTR addresses the two

challenges in Section 4.1, i.e. learning city-agnostic node features,

and learning graph structures for transferable forecasting models.

4.3.1 Learning City-agnostic Node Features via Knowledge Distilla-
tion. City-agnostic node features are crucial to transfer the knowl-

edge encoded in the structure generator across cities. However, it

is challenging to learn city-agnostic node features from long-term
source data and short-term target data. To address the challenge, we

adapt knowledge distillation [15], widely used to transfer knowl-

edge from a large teacher network to a small student network, to

transfer long-term knowledge to short-term target data. The intu-

ition is that, features learned from long-term data contain additional

knowledge than those learned from short-term data, and that we

can learn such additional knowledge by fitting those features.

Specifically, we first follow STEP [31] to pre-train a node feature

network 𝑓𝜃𝑛𝑓 ,S with rich source data to capture long-term temporal

knowledge. The source feature network is pre-trained with masked

autoencoding [14] to reconstruct masked patches using unmasked

ones in a long input sequence x ∈ R𝐿 ·𝑃 . We then aim to distill the

rich knowledge encoded in 𝑓𝜃𝑛𝑓 ,S to 𝑓𝜃𝑛𝑓 which only takes short-

term sequences as inputs. Given a long-term sequence x ∈ R𝐿 ·𝑃 ,
we obtain its corresponding short-term sequence x′ ∈ R𝐿𝑠ℎ𝑜𝑟𝑡 ·𝑃 as

x′ = x[𝑝 · 𝑃 : (𝑝 + 𝐿𝑠ℎ𝑜𝑟𝑡) · 𝑃], (7)

where x[𝑎 : 𝑏] denotes the operation of selecting elements with

indices between 𝑎 and 𝑏, and 𝑝 is a random position. We then feed

x and x′ to 𝑓𝜃𝑛𝑓 ,S and 𝑓𝜃𝑛𝑓 respectively to obtain the corresponding

long-term and short-term features x𝑒𝑛𝑐 , x′𝑒𝑛𝑐 ,

x𝑒𝑛𝑐 = 𝑓𝜃𝑛𝑓 ,S (x) ∈ R
𝐿×𝑛𝑒𝑚𝑏 ,

x′𝑒𝑛𝑐 = 𝑓𝜃𝑛𝑓 (x
′) ∈ R𝐿𝑠ℎ𝑜𝑟𝑡×𝑛𝑒𝑚𝑏 .

(8)

As x𝑒𝑛𝑐 is enriched with long-term observations (i.e. x\x′) while
x′𝑒𝑛𝑐 is not, x𝑒𝑛𝑐 should contain richer long-term temporal knowl-

edge than x′𝑒𝑛𝑐 . Therefore, we minimize the distance between x′𝑒𝑛𝑐
and the corresponding patch features in x𝑒𝑛𝑐 , such that 𝑓𝜃𝑛𝑓 learns

to seek long-term features from short-term data,

L𝑑𝑖𝑠𝑡𝑖𝑙 (x) =

x′𝑒𝑛𝑐 − x𝑒𝑛𝑐 [𝑝 : 𝑝 + 𝐿𝑠ℎ𝑜𝑟𝑡]

2 , (9)

where ∥ · ∥ denotes the 𝐿2 distance. Finally, to learn both city-

agnostic and helpful node features, we train 𝑓𝜃𝑛𝑓 by minimizing

the following objective,

min

𝜃𝑛𝑓
L𝑀𝑎𝑠𝑘𝑒𝑑𝐴𝐸 (x𝑣𝑡) + 𝜆𝑑L𝑑𝑖𝑠𝑡𝑖𝑙 (x𝑣𝑠), (10)

where x𝑣𝑠 , x𝑣𝑡 are data samples from source and target cities,L𝑀𝑎𝑠𝑘𝑒𝑑𝐴𝐸

denotes the loss of masked autoencoding [14], and 𝜆𝑑 is a hyperpa-

rameter. In this way, 𝑓𝜃𝑛𝑓 learns to generate node features for both

source (via L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (x𝑣𝑠)) and target cities (via L𝑀𝑎𝑠𝑘𝑒𝑑𝐴𝐸 (x𝑣𝑡)).
Thus, 𝑓𝜙 , which takes the city-agnostic node features as inputs, can

be transferred to generate graph structures across cities.

4.3.2 Learning Graph Structures via Temporal Decoupled Regular-
ization. In this section, we introduce how to learn graph structures

to facilitate learning transferable forecasting models across cities.

Specifically, we first make two observations from existing works.

• Graph structure itself is a feature extractor. Each GNN

layer consists of two operations, feature passing where node

features are passed along the edges, and feature transfor-

mation where nodes aggregate and transform the received

features. As studied in [28, 40, 50], the feature passing step,

involving only the graph structure, can be seen as a low-pass

filter on its graph signals (i.e. node features) that extract

smooth node features. Therefore, in addition to a part of the

input data, the graph structure works as an implicit spatial

feature extractor for graph-based traffic data.

• Feature extractors should extract similar features across
domains. Many existing works on domain adaptation [8, 24,

25] have shown that for a feature extractor to be transfer-

able across domains, it should extract features from different

domains with similar distributions.

Inspired by these observations, we propose a spatial feature reg-

ularization term to minimize the distance between spatial features

extracted from both source and target cities, i.e.

L𝑟𝑒𝑔 =

𝑀∑︁
𝑚=1

𝑑
(
SS,𝑚, ST,𝑚

)
, (11)

where SS,𝑚 denotes the spatial features extracted from source input

data [X𝑡−𝑘𝑖+1
S , . . . ,X𝑡

S] at layer𝑚, and similarly for ST,𝑚 . We adopt

CORAL [32] as the distance metric 𝑑 (·, ·).

Robust Regularization via Temporal Decoupling. A major assump-

tion in domain adaptation is that data samples are independently

and identically distributed [2, 3, 47]. However, the assumption does

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yilun Jin, Kai Chen, and Qiang Yang

not hold for the task of traffic forecasting. Specifically, data sam-

ples from different time steps do not necessarily follow the same

distribution. For example, traffic during rush hours on weekdays

commonly suffers from congestion, and thus, speed data sampled

from rush hours differ significantly from those sampled from week-

ends. As a result, the spatial features S𝑚 may have wildly different

distributions even for the same graph structures, which leads to

noise and instability in the evaluation and optimization of L𝑟𝑒𝑔 .

We propose a temporal decoupled regularization to address the

issue. The intuitions of the temporal decoupling are two-fold.

• The differences in the distributions of training samples, and

consequently S𝑚 are caused by the dynamic nature of traffic

data, and thus, we can reduce the distribution differences by

decoupling the temporal dynamics from S𝑚 .

• The temporal dynamics of S𝑚 comes solely from its preced-

ing temporal features H𝑚 .

We design a series of decoupling modules 𝜃𝑑𝑒𝑐,𝑚 to implement the

intuition, where𝑚 denotes the layer index. Inspired by regression

analysis, we aim to train the decoupling modules to reconstruct S𝑚
with its preceding temporal features H𝑚 , i.e.

min

{𝜃𝑑𝑒𝑐,𝑚 }𝑚=1,...𝑀

L𝑟𝑒𝑐𝑜𝑛𝑠 =

𝑀∑︁
𝑚=1

S𝑚 − 𝑓𝜃𝑑𝑒𝑐,𝑚 (H𝑚)

2 . (12)

In this way, the spatial features S𝑚 are implicitly decomposed into

two parts, 𝑓𝜃𝑑𝑒𝑐,𝑚 (H𝑚) which is explained by the temporal dynam-

ics in H𝑚 , and the residual spatial features S̃𝑚 = S𝑚 − 𝑓𝜃𝑑𝑒𝑐,𝑚 (H𝑚)
which are not dynamic. We then replace SS,𝑚, ST,𝑚 in L𝑟𝑒𝑔 with

the residual spatial features S̃S,𝑚, S̃T,𝑚 to obtain the decoupled

regularization L𝑑𝑒𝑐𝑟𝑒𝑔 as a more stable regularization than L𝑟𝑒𝑔 .

Finally, we jointly train the structure generator 𝑓𝜙 and the fore-

casting model 𝑓𝜃 with the following objective to learn graph struc-

tures that help extract transferable knowledge across cities

min

𝜙,𝜃
LS + 𝜆𝑟L𝑑𝑒𝑐𝑟𝑒𝑔, (13)

where LS is the forecasting error evaluated on abundant source

data, similar to Eqn. 2, and 𝜆𝑟 is a hyperparameter. In addition, we

alternately train the decoupling modules {𝜃𝑑𝑒𝑐,𝑚} with Eqn. 12.

We note that {𝜃𝑑𝑒𝑐,𝑚} and 𝜃, 𝜙 are not jointly optimized to avoid

learning naive graph structures, i.e. Â = I.

4.3.3 Overall Training Algorithm. The overall training process of
TransGTR is shown in Algorithm 1 in the Appendix. We first train

the node feature network 𝑓𝜃𝑛𝑓 for city-agnostic node features. Then,

we fix the node feature network 𝑓𝜃𝑛𝑓 to reduce computation and

memory overhead, and train 𝜃, 𝜙 to learn transferable forecasting

models. Finally, 𝑓𝜃 , 𝑓𝜙 are further fine-tuned on target data.

5 EXPERIMENTS
In this section, we present our experimental evaluations on Trans-

GTR. Our evaluations aim to answer the following questions:

• How does TransGTR compare against state-of-the-art trans-

fer learning methods for graph-based traffic forecasting?

• How do individual TransGTR design components and hy-

perparameters affect the overall performance of TransGTR?

• How can the advantages of TransGTR be intuitively shown

and understood?

5.1 Experimental Setup
Datasets. We use four real-world traffic speed datasets, METR-

LA, PEMS-BAY, PEMSD7M, and HKTD for evaluation. We show

statistics of the datasets in Table 4 in the Appendix. We take METR-

LA and PEMS-BAY, datasets with more samples as source cities,

and the rest as target cities. For target cities, to simulate the lack

of data, we use 7-day and 3-day data for training. We cover more

details about data processing in Appendix Section A.

Base Models. We take GTS [30] as the base structure generator

𝑓𝜙 , and Graph-WaveNet (GWN) [40] as the base forecasting model

𝑓𝜃 due to their empirically good performance and efficiency [17].

We also note that TransGTR applies to other structure generators

and graph-based forecasting models (with the formulation in Eqn.

6). Details of base models are discussed in Appendix Section C.

Metrics. Following existingworks [22, 27, 31, 40], we evaluate the
forecasting performance by root mean squared error (RMSE), mean

absolute error (MAE), and mean absolute percentage error (MAPE).

We evaluate the performance with two forecasting horizons, 30

minutes (6 steps ahead) and 60 minutes (12 steps ahead).

Comparison Methods. We compare TransGTR with the following

transfer learning methods for traffic forecasting.

• FT-GWN and FT-GTS. We first train GWN and GTS models

with the source data, and fine-tune them with target data.

• RegionTrans [37]. With the GWN trained with source data,

RegionTrans computes the similarity between source and

target nodes and uses it to regularize target fine-tuning.

• DASTNet [33]. In addition to the GWN trained with source

data, DASTNet also learns domain adaptive node embed-

dings to bridge structurally similar nodes between cities.

• ST-GFSL [27]. ST-GFSL leverages hypernetworks [10] to

generate node-specific parameters. The node-specific pa-

rameters are generated via node-level meta-knowledge, ex-

tracted from the graph-based traffic data, such that similar

nodes share similar parameters.

We also compare with baselines that only use target data.

• ARIMA, i.e. auto-regressive intergrated moving average. It

is a statistical regression model for time series.

• GWN and GTS models trained target data only.

For a fair comparison, except for ARIMA, all baselines adopt GWN

as the base forecasting model. We present details of baselines in

Appendix Section B. We also discuss implementation details and

hyperparameter settings of TransGTR in Appendix Section C. We

provide the link to the code and data at

https://github.com/KL4805/TransGTR/

5.2 Performance Comparison
In this section, we present quantitative evaluations of TransGTR.

We evaluate TransGTR and baselines on two datasets, PEMSD7M

and HKTD. For each task, we transfer from both METR-LA and

PEMS-BAY. We report the means and standard deviations of 5

independent runs in Table 1. Due to space limitations, we separately

Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: Comparative evaluation results with PEMSD7M and HKTD as target cities. LA and BAY stand for METR-LA and
PEMS-BAY as source cities, respectively. In each column, the best result is presented in bold and the second best is underlined.

Target City Baselines
Target Data 7-day 3-day
Horizon 30 mins 60 mins 30 mins 60 mins
Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE

PEMSD7M

Target Only
ARIMA 6.525 3.682 8.942 5.426 6.526 3.698 8.946 5.453

GWN 5.748 2.999 7.279 3.824 6.053 3.126 7.994 4.162

GTS 5.639 2.988 7.071 3.746 5.831 3.111 7.508 4.014

Source LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY

Transfer

FT-GWN 5.645 5.771 2.913 2.970 7.038 7.128 3.636 3.690 5.873 5.935 3.045 3.077 7.349 7.596 3.845 3.978

FT-GTS 5.685 5.651 2.908 2.901 6.952 6.899 3.526 3.543 5.946 5.986 3.024 3.078 7.203 7.205 3.736 3.749

RegionTrans 5.654 5.702 2.909 2.935 6.986 7.077 3.597 3.659 5.868 5.948 3.046 3.073 7.376 7.545 3.862 3.963

DASTNet 5.659 5.633 2.901 2.905 6.976 6.954 3.553 3.599 5.839 5.908 3.031 3.078 7.245 7.294 3.774 3.811

ST-GFSL 5.647 5.642 2.941 2.927 6.937 6.931 3.535 3.541 5.840 5.912 3.012 3.071 7.219 7.218 3.738 3.744

TransGTR 5.461 5.454 2.800 2.802 6.565 6.601 3.340 3.373 5.627 5.679 2.960 2.958 6.922 6.931 3.604 3.599
Std. Dev. 0.024 0.015 0.019 0.007 0.041 0.022 0.028 0.008 0.029 0.040 0.017 0.016 0.040 0.053 0.026 0.020

HKTD

Target Only
ARIMA 6.648 3.816 8.249 4.843 6.650 3.822 8.253 5.863

GWN 6.062 3.386 7.206 4.000 6.333 3.477 7.727 4.333

GTS 6.052 3.380 6.954 3.903 6.252 3.453 7.249 4.011

Source LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY

Transfer

FT-GWN 5.755 5.792 3.237 3.264 6.552 6.551 3.682 3.728 5.939 5.949 3.351 3.373 6.984 6.927 3.922 3.980

FT-GTS 5.792 5.796 3.242 3.253 6.420 6.496 3.633 3.682 5.999 5.982 3.369 3.351 6.784 6.849 3.854 3.862

RegionTrans 5.696 5.728 3.216 3.228 6.424 6.456 3.654 3.683 5.935 5.943 3.342 3.345 6.870 6.894 3.880 3.933

DASTNet 5.690 5.704 3.200 3.221 6.411 6.442 3.619 3.655 5.905 5.921 3.379 3.361 6.786 6.798 3.881 3.862

ST-GFSL 5.704 5.739 3.225 3.231 6.477 6.435 3.624 3.638 5.960 5.993 3.392 3.388 6.847 6.821 3.869 3.878

TransGTR 5.666 5.661 3.141 3.140 6.205 6.232 3.441 3.455 5.928 5.877 3.305 3.290 6.622 6.589 3.693 3.697
Std. Dev. 0.018 0.016 0.007 0.018 0.026 0.022 0.013 0.017 0.019 0.018 0.010 0.011 0.031 0.025 0.011 0.010

Table 2: Results of Model Analysis. The target city is chosen as PEMSD7M with 7-day data.

Analyzed
Component

Source METR-LA PEMS-BAY
Horizon 30 mins 60 mins 30 mins 60 mins

Metric RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Node Feature TransGTR-NoDistil 5.573 2.869 6.742 3.439 5.545 2.846 6.761 3.474

Learning TransGTR-NoWP 5.519 2.837 6.671 3.382 5.559 2.833 6.715 3.423

Graph Structure
Learning

TransGTR-NoSL 5.645 2.913 7.038 3.636 5.771 2.970 7.128 3.690

TransGTR-NoReg 5.591 2.860 6.764 3.434 5.591 2.873 6.778 3.460

TransGTR-NoDec 5.552 2.843 6.693 3.415 5.529 2.840 6.729 3.428

TransGTR 5.461 2.800 6.565 3.340 5.454 2.802 6.601 3.373

show the results of MAPE in Appendix Section D. We make the

following observations from Table 1.

• TransGTR consistently achieves improvements against state-

of-the-art baselines. For PEMSD7M as the target city, Trans-

GTR performs the best in all evaluated metrics. For HKTD

as the target city, TransGTR performs the best in 15 out of

16 evaluated metrics. Compared with the second best results,

TransGTR achieves an improvement of up to 5.4%.

• TransGTR is more competitive with longer forecasting hori-

zons. For example, for PEMSD7M as the target city, Trans-

GTR achieves an improvement of up to 3.6%with a 30-minute

forecasting horizon, compared to 5.4% with a 60-minute fore-

casting horizon. The observation corresponds with the de-

sign of TransGTR that transfers long-term temporal knowl-

edge to the target city, such that the learned graph structure

in the target city better reflect node-wise dependencies.

5.3 Model Analysis
In this section, we analyze the effects of individual components in

TransGTR. We analyze both node feature learning for transferable

structure generators, and graph structure learning for transferable

forecasting models. The other part is not changed when we analyze

one part. We perform analyses with METR-LA and PEMS-BAY as

source cities, PEMSD7M as the target city with 7-day training data.

5.3.1 City-agnostic Node Feature Learning. We analyze how learn-

ing city-agnostic node features affects the performance of Trans-

GTR. We compare TransGTR with the following variants.

• TransGTR-NoDistil. We remove knowledge distillation

and only train 𝑓𝜃𝑛𝑓 with target data. In this way, TransGTR-

NoDistil generates target node features GT that are not

generalizable with GS , and thus, the structure generator

trained on source data may not transfer well to target data.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yilun Jin, Kai Chen, and Qiang Yang

• TransGTR-NoWP, in which we remove the day-in-week

encoding from 𝑓𝜃𝑛𝑓 . In this way, TransGTR-NoWP may not

adequately model the property of weekly periodicity, which

is crucial in long-term traffic data.

We use RMSE and MAE on PEMSD7M as metrics, similar to Section

5.2. We show the results in Table 2 with the following observations.

• Compared with TransGTR-NoDistil, TransGTR-NoWP and

TransGTR consistently achieve better performances. The

improvement indicates that with knowledge distillation, 𝑓𝜃𝑛𝑓
learns city-agnostic node features in both cities, upon which

the shared structure generator is enriched with both source

and target knowledge to learn more helpful graphs.

• TransGTR consistently outperforms TransGTR-NoWP,which

echoes the fact that weekly periodicity is an important prop-

erty in long-term traffic data, but cannot be well modeled

with only short-term target data. Thus, with the day-in-week

encodings, 𝑓𝜃𝑛𝑓 learns node features for the target city that

better resemble those in the source city.

5.3.2 Graph Structure Learning with Decoupled Regularization. We

compare TransGTR with the following variants to analyze the ef-

fects of the temporal decoupled regularization.

• TransGTR-NoSL, in which we disable structure learning

and use the pre-defined graph structures. Without structure

learning, TransGTR-NoSL is equivalent to FT-GWN.

• TransGTR-NoReg. We set 𝜆𝑟 = 0 in Eqn. 13. In this way,

the structure generator learns a graph structure that only

improves forecasting performance in the source city.

• TransGTR-NoDec. We remove the decoupling modules

𝜃𝑑𝑒𝑐,𝑚 and replace L𝑑𝑒𝑐𝑟𝑒𝑔 with L𝑟𝑒𝑔 in Eqn. 13. In this

way, the spatial feature regularization suffers from variances

caused by temporal dynamics, causing instability that may

harm the overall performance.

We also show results in Table 2 with the following observations.

• TransGTR-NoSL yields significantly worse performances

compared with all other variants, which, in addition to Fig. 1,

indicates that learning graph structures is crucial for trans-

ferring knowledge for traffic forecasting across cities.

• TransGTR-NoReg performsworse compared to variants with

regularization. As TransGTR-NoReg learns a graph structure

only for the source city, the observation suggests that such

a graph structure may only capture city-specific knowledge

and thus harm knowledge transfer.

• TransGTR-NoDec improvesmarginally over TransGTR-NoReg

and is less competitive than TransGTR, which underscores

the importance of temporal decoupling in the regularization

term, without which the performance is compromised.

5.4 Parameter Analysis
In this section, we analyze the effects of hyperparameters 𝜆𝑑 (Eqn.

10) and 𝜆𝑟 (Eqn. 13) in TransGTR. We follow the setting as Section

5.3. We vary 𝜆𝑑 ∈ {0.1, 0.5, 1, 5}, 𝜆𝑟 ∈ {0.001, 0.01, 0.1, 1}, and plot

the corresponding performances in Fig. 3 and 4. We observe that as

we increase both 𝜆𝑑 and 𝜆𝑟 , the forecasting errors first decrease and

then increase after specific values (𝜆𝑑 = 1, 𝜆𝑟 = 0.01). As shown

in Eqn. 10, 𝜆𝑑 aims to strike a balance between source knowledge

0.1 0.5 1 5
λd

6.55

6.60

6.65

6.70

6.75

R
M
SE

RMSE (Left)
MAE (Right)

3.34

3.36

3.38

3.40

3.42

M
A
E

METR-LA->PEMSD7M

(a) METR-LA to PEMSD7M

0.1 0.5 1 5
λd

6.60

6.65

6.70

6.75

R
M
SE

RMSE (Left)
MAE (Right)

3.36

3.38

3.40

3.42

3.44

M
A
E

PEMS-BAY->PEMSD7M

(b) PEMS-BAY to PEMSD7M

Figure 3: Results of parameter analysis on 𝜆𝑑 , from both
METR-LA andPEMS-BAY to PEMSD7M. The reportedmetrics
are evaluated with a forecasting horizon of 60 minutes.

0.001 0.01 0.1 1
λr

6.55

6.60

6.65

6.70

6.75

R
M
SE

RMSE (Left)
MAE (Right)

3.34

3.36

3.38

3.40

3.42

M
A
E

METR-LA->PEMSD7M

(a) METR-LA to PEMSD7M

0.001 0.01 0.1 1
λr

6.60

6.65

6.70

6.75

R
M
SE

RMSE (Left)
MAE (Right)

3.36

3.38

3.40

3.42

3.44

M
A
E

PEMS-BAY->PEMSD7M

(b) PEMS-BAY to PEMSD7M

Figure 4: Results of parameter analysis on 𝜆𝑟 , from both
METR-LA andPEMS-BAY to PEMSD7M. The reportedmetrics
are evaluated with a forecasting horizon of 60 minutes.

and target knowledge, and thus, setting a large 𝜆𝑑 results in node

features that are biased to the source city, upon which the structure

generator is also biased. Similarly, as shown in Eqn. 13, an unduly

large 𝜆𝑟 may result in learning naive graph structures (i.e. Â = I)
to minimize L𝑑𝑒𝑐𝑟𝑒𝑔 , which also harms the overall performance.

Therefore, the observations correspond with TransGTR designs.

5.5 Case Studies
We present illustrative case studies to help understand the advan-

tages of TransGTR. All studies are performed with METR-LA as

source and PEMSD7M as target with 7-day training data.

5.5.1 Graph Structure Analysis. We first analyze how the graph

structures learned by TransGTR help the task of traffic forecasting.

We compare the following graph structures.

• Pre-defined, i.e. the pre-defined graph structure.

• Random: We generate an Erdős-Rényi random graph [6]

with the same density as the pre-defined graph.

• Target-only: We train TransGTR with only target data and

obtain the learned graph in the target city.

• TransGTR: We train TransGTR with source and target data

and obtain the learned graph in the target city.

Intuitively, a graph structure is more suitable for traffic forecast-

ing if it connects nodes with more similar traffic readings, while a

graph structure is noisy if it connects nodes with both similar and

dissimilar traffic readings. Therefore, for each connected node pair

(𝑢, 𝑣) in each graph, we compute the distance (RMSE and MAE)

Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities KDD ’23, August 6–10, 2023, Long Beach, CA, USA

−0.4 −0.2 0.0 0.2 0.4

−0.05

0.00

0.05

Source, Day
Source, Night

Target, Day
Target, Night

(a) 𝜆𝑟 = 0, spatial features

−0.4 −0.2 0.0 0.2 0.4

−0.05

0.00

0.05

Source, Day
Source, Night

Target, Day
Target, Night

(b) 𝜆𝑟 = 0, residual spatial features

−0.4 −0.2 0.0 0.2 0.4

−0.05

0.00

0.05

Source, Day
Source, Night

Target, Day
Target, Night

(c) 𝜆𝑟 = 0.01, residual spatial features

Figure 5: Visualization of spatial features S𝑀 and residual spatial features S̃𝑀 obtained from TransGTR with 𝜆𝑟 = 0 and 𝜆𝑟 = 1.
Red dots represent source features, while blue dots represent target features. In addition, dark dots represent day-time features,
while light dots represent night-time features. The axes in all sub-figures are of the same range.

Table 3: Mean RMSE and MAE (± std. dev. within the graph)
between connected node pairs in different graph structures.

Graph Structures RMSE MAE

Random 14.90±4.63 10.00±3.49
Pre-defined 13.86±5.21 9.27±3.79
Target-only 13.80±4.19 9.21±3.12
TransGTR 12.85±4.17 8.43±3.22

between x𝑢 and x𝑣 and report the mean values and standard devi-

ations within each graph. The results are shown in Table 3, from

which we make the following observations.

• The distances between connected node pairs in the pre-

defined graph show high variance (even larger than the

random graph), indicating that the pre-defined graph is

noisy and not optimal for traffic forecasting. By compar-

ison, learned graph structures (target-only and TransGTR)

are less noisy, as shown by the lower variances, and are thus

more appropriate for traffic forecasting.

• TransGTR achieves the lowest distances between connected

node pairs among all studied methods, which, in addition

to the quantitative results in Section 5.2, shows that with

the knowledge transferred from the source city, TransGTR

learns better graph structures for traffic forecasting.

5.5.2 Spatial Feature Analysis. We show visualizations of the learned

spatial features to understand how TransGTR learns graph struc-

tures that help extract city-invariant knowledge. We train two

TransGTR models with 𝜆𝑟 = 0 and 𝜆𝑟 = 0.01 and obtain the final-

layer spatial features S𝑀 and residual spatial features S̃𝑀 extracted

from source and target data. We use PCA to reduce S𝑀 and S̃𝑀
to 2 dimensions and plot them in Fig. 5. In addition, we use dark

and light points to represent day-time (8am-8pm) and night-time

spatial features, respectively. We make the following observations.

• From Fig. 5(a), we observe that day-time and night-time

spatial features are highly separated along the x-axis, the di-

rection with the highest variance. Specifically, day-time and

night-time spatial features are mostly located on the right

and left, respectively. The observation shows that temporal

dynamics cause significant variances in spatial features. By

comparison, the variance along the x-axis is greatly reduced

in Fig. 5(b), indicating that the residual spatial features S̃𝑀
are more stable and suitable for regularization.

• From Fig. 5(b), we observe that without regularization (𝜆𝑟 =

0), the residual spatial features from source and target cities

are separated along the y-axis and thus represent city-specific

knowledge. By comparison, in Fig. 5(c), residual spatial fea-

tures from both cities are better mixed with each other, sug-

gesting that with the decoupled regularization, TransGTR

learns city-invariant knowledge by generating graph struc-

tures that extract spatial features with similar distributions.

6 CONCLUSION
In this paper, we propose TransGTR, a transferable structure learn-

ing framework for traffic forecasting that jointly learns and trans-

fers the graph structures and the forecasting models across cities.

TransGTR consists of a node feature network, a structure generator,

and a forecasting model. We train the node feature network with

knowledge distillation to extract city-agnostic node features, such

that the structure generator, taking the node features as inputs, can

be transferred across both cities. Furthermore, we train the struc-

ture generator via a temporal decoupled regularization, such that

the spatial features learned with the generated graphs share similar

distributions across cities and thus facilitate knowledge transfer

for the forecasting model. We evaluate TransGTR on real-world

traffic speed datasets, where under a fair comparison, TransGTR

outperforms state-of-the-art baselines by up to 5.4%.

We discuss the limitations of TransGTR in Appendix Section E.

ACKNOWLEDGMENTS
We are grateful to Xu Geng for his helpful suggestions. This paper is

supported by the Key-Area Research and Development Program of

Guangdong Province (2021B0101400001), Hong Kong RGC TRS T41-

603/20-R, the National Key Research and Development Program

of China under Grant No.2018AAA0101100, and the Turing AI

Computing Cloud [41].

REFERENCES
[1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive graph

convolutional recurrent network for traffic forecasting. Advances in Neural
Information Processing Systems 33 (2020), 17804–17815.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yilun Jin, Kai Chen, and Qiang Yang

[2] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and

Jennifer Wortman Vaughan. 2010. A theory of learning from different domains.

Machine Learning 79, 1 (2010), 151–175.

[3] Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bern-

hard Schölkopf, and Alex J Smola. 2006. Integrating structured biological data by

kernel maximum mean discrepancy. Bioinformatics 22, 14 (2006), e49–e57.
[4] Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang,

Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, et al. 2020. Spectral temporal graph

neural network for multivariate time-series forecasting. Advances in Neural
Information Processing Systems 33 (2020), 17766–17778.

[5] Suresh Chavhan and Pallapa Venkataram. 2020. Prediction based traffic manage-

ment in a metropolitan area. Journal of Traffic and Transportation Engineering
(English edition) 7, 4 (2020), 447–466.

[6] Paul Erdős, Alfréd Rényi, et al. 1960. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. In International Conference on
Machine Learning, Vol. 70. PMLR, 1126–1135.

[8] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo

Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.

Domain-adversarial training of neural networks. The Journal of Machine Learning
Research 17, 1 (2016), 2096–2030.

[9] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.

Attention based spatial-temporal graph convolutional networks for traffic flow

forecasting. In Proc. of the AAAI Conf. on Artificial Intelligence, Vol. 33. 922–929.
[10] David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. arXiv preprint

arXiv:1609.09106 (2016).
[11] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in Neural Information Processing Systems.
1025–1035.

[12] Liangzhe Han, Bowen Du, Leilei Sun, Yanjie Fu, Yisheng Lv, and Hui Xiong.

2021. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed

forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 547–555.

[13] Xiaolin Han, Tobias Grubenmann, Reynold Cheng, Sze Chun Wong, Xiaodong

Li, and Wenya Sun. 2020. Traffic incident detection: A trajectory-based approach.

In IEEE International Conference on Data Engineering (ICDE). IEEE, 1866–1869.
[14] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.

2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16000–16009.

[15] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).
[16] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization

with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[17] Renhe Jiang, Du Yin, Zhaonan Wang, Yizhuo Wang, Jiewen Deng, Hangchen Liu,

Zekun Cai, Jinliang Deng, Xuan Song, and Ryosuke Shibasaki. 2021. DL-Traff:

Survey and Benchmark of Deep Learning Models for Urban Traffic Prediction. In

Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 4515–4525.

[18] Weiwei Jiang and Jiayun Luo. 2022. Graph neural network for traffic forecasting:

A survey. Expert Systems with Applications (2022), 117921.
[19] Yilun Jin, Kai Chen, and Qiang Yang. 2022. Selective Cross-City Transfer Learning

for Traffic Prediction via Source City Region Re-Weighting. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 731–741.

[20] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.

Multi-task representation learning for travel time estimation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1695–1704.

[22] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolu-

tional recurrent neural network: Data-driven traffic forecasting. In International
Conference on Learning Representations.

[23] Hao Liu, Jindong Han, Yanjie Fu, Yanyan Li, Kai Chen, and Hui Xiong. 2022.

Unified route representation learning for multi-modal transportation recommen-

dation with spatiotemporal pre-training. The VLDB Journal (2022), 1–18.
[24] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning

transferable features with deep adaptation networks. In International Conference
on Machine Learning. PMLR, 97–105.

[25] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep

transfer learning with joint adaptation networks. In International Conference on
Machine Learning. PMLR, 2208–2217.

[26] Tiancheng Lou, Jie Tang, John Hopcroft, Zhanpeng Fang, and Xiaowen Ding.

2013. Learning to predict reciprocity and triadic closure in social networks. ACM
Transactions on Knowledge Discovery from Data (TKDD) 7, 2 (2013), 1–25.

[27] Bin Lu, Xiaoying Gan, Weinan Zhang, Huaxiu Yao, Luoyi Fu, and Xinbing Wang.

2022. Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge

Transfer. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining. ACM, New York, NY, USA, 1162–1172.

[28] Hoang Nt and Takanori Maehara. 2019. Revisiting graph neural networks: All

we have is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).
[29] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE

Transactions on Knowledge and Data Engineering 22, 10 (2009), 1345–1359.

[30] Chao Shang, Jie Chen, and Jinbo Bi. 2021. Discrete graph structure learning for

forecasting multiple time series. International Conference on Learning Representa-
tions (ICLR) (2021).

[31] Zezhi Shao, Zhao Zhang, FeiWang, and Yongjun Xu. 2022. Pre-Training Enhanced

Spatial-Temporal Graph Neural Network forMultivariate Time Series Forecasting.

In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. ACM, New York, NY, USA, 1567–1577.

[32] Baochen Sun and Kate Saenko. 2016. Deep coral: Correlation alignment for deep

domain adaptation. In European Conf. on Computer Vision. Springer, 443–450.
[33] Yihong Tang, Ao Qu, Andy H.F. Chow,William H.K. Lam, S.C. Wong, andWei Ma.

2022. Domain Adversarial Spatial-Temporal Network: A Transferable Framework

for Short-Term Traffic Forecasting across Cities. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. ACM, New

York, USA, 1905–1915.

[34] Luan Tran, Min Y Mun, Matthew Lim, Jonah Yamato, Nathan Huh, and Cyrus

Shahabi. 2020. DeepTRANS: a deep learning system for public bus travel time

estimation using traffic forecasting. Proceedings of the VLDB Endowment 13, 12
(2020), 2957–2960.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in Neural Information Processing Systems 30 (2017).
[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. In International Confer-
ence on Learning Representations.

[37] Leye Wang, Xu Geng, Xiaojuan Ma, Feng Liu, and Qiang Yang. 2019. Cross-city

Transfer Learning for Deep Spatio-temporal Prediction. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence. 1893–1899.

[38] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International
Conference on Machine Learning. PMLR, 6861–6871.

[39] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi

Zhang. 2020. Connecting the dots: Multivariate time series forecasting with graph

neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 753–763.

[40] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Graph wavenet for deep spatial-temporal graph modeling. In Proceedings of the
28th International Joint Conference on Artificial Intelligence. 1907–1913.

[41] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang Ren, Xudong Liao, Decang

Sun, Chaoliang Zeng, and Kai Chen. 2021. TACC: A full-stack cloud computing

infrastructure for machine learning tasks. arXiv preprint arXiv:2110.01556 (2021).
[42] Huaxiu Yao, Yiding Liu, YingWei, Xianfeng Tang, and Zhenhui Li. 2019. Learning

from multiple cities: A meta-learning approach for spatial-temporal prediction.

In The World Wide Web Conference. 2181–2191.
[43] Junchen Ye, Zihan Liu, Bowen Du, Leilei Sun, Weimiao Li, Yanjie Fu, and Hui

Xiong. 2022. Learning the evolutionary and multi-scale graph structure for

multivariate time series forecasting. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 2296–2306.

[44] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convolu-

tional networks: a deep learning framework for traffic forecasting. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence. 3634–3640.

[45] Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2021. An effective joint pre-

diction model for travel demands and traffic flows. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 348–359.

[46] Zhuoning Yuan, Xun Zhou, and Tianbao Yang. 2018. Hetero-convlstm: A deep

learning approach to traffic accident prediction on heterogeneous spatio-temporal

data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 984–992.

[47] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. 2019. Bridging

theory and algorithm for domain adaptation. In International Conference on
Machine Learning. PMLR, 7404–7413.

[48] Bolong Zheng, Lingfeng Ming, Qi Hu, Zhipeng Lü, Guanfeng Liu, and Xiaofang

Zhou. 2022. Supply-Demand-aware Deep Reinforcement Learning for Dynamic

Fleet Management. ACM Transactions on Intelligent Systems and Technology
(TIST) 13, 3 (2022), 1–19.

[49] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic

network embedding by modeling triadic closure process. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 32.

[50] Meiqi Zhu, XiaoWang, Chuan Shi, Houye Ji, and Peng Cui. 2021. Interpreting and

unifying graph neural networks with an optimization framework. In Proceedings
of the Web Conference 2021. 1215–1226.

[51] Daniel Zügner, François-Xavier Aubet, Victor Garcia Satorras, Tim Januschowski,

Stephan Günnemann, and Jan Gasthaus. 2021. A study of joint graph inference

and forecasting. arXiv preprint arXiv:2109.04979 (2021).

Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Algorithm 1: Transferable Graph Structure Learning for

Graph-based Traffic Forecasting with TransGTR

Input: Source and target traffic data XS,XT ,
TSFormer 𝜃𝑛𝑓 ,S pre-trained with XS
Output: A node feature network 𝑓𝜃𝑛𝑓 ,

a structure generator 𝑓𝜙 ,

and a forecasting model 𝑓𝜃 for the target city T
1: //Train the node feature network 𝑓𝜃𝑛𝑓
2: while 𝑓𝜃𝑛𝑓 has not converged do
3: Sample x𝑣S ∈ XS, x𝑣T ∈ XT .
4: Optimize 𝜃𝑛𝑓 via Eqn. 10 with data x𝑣S , x𝑣T .
5: end while
6: Compute GS,GT via Eqn. 5.

7: //Train the structure generator 𝑓𝜙 and forecasting
model 𝑓𝜃

8: while 𝑓𝜃 , 𝑓𝜙 have not converged do
9: Sample SS,0 = [X𝑡−𝑘𝑖+1

S , . . . ,X𝑡
S], 𝑡 < 𝑇S − 𝑘𝑜 .

10: Sample ST,0 = [X𝑡 ′−𝑘𝑖+1
T , . . . ,X𝑡 ′

T], 𝑡
′ < 𝑇T − 𝑘𝑜 .

11: Optimize 𝜃, 𝜙 via Eqn. 13 with data SS,0, ST,0.
12: Optimize {𝜃𝑑𝑒𝑐,𝑚} via Eqn. 12.
13: end while
14: Fine-tune 𝜃, 𝜙 with target data.

15: return Trained models 𝑓𝜃𝑛𝑓 , 𝑓𝜃 , 𝑓𝜙 .

Dataset |V| Density # Time Steps Sample Rate

METR-LA 207 0.066 34272

5 min

PEMS-BAY 325 0.027 52116

PEMSD7M 228 0.087 12672

HKTD 608 0.059 30240

Table 4: Statistics of the datasets.

A DETAILS OF DATASETS
Weuse four traffic speed datasets,METR-LA, PEMS-BAY, PEMSD7M,

and HKTD for evaluation. Among them, METR-LA, PEMS-BAY,

and PEMSD7M come from DL-Traff
2
[17], and HKTD comes from

the Hong Kong Transport Department. Statistics of all datasets are

shown in Table 4. For all datasets, we apply Z-score normalization,

i.e. normalizing the data such that their mean values are 0 and stan-

dard deviations are 1. For METR-LA, PEMS-BAY, and PEMSD7M,

we adopt their pre-defined graph structures for baselines (Trans-

GTR does not require pre-defined graph structures). For HKTD, we

define its graph structure by computing pairwise distances between

sensors, and then applying thresholded Gaussian kernels.

We split the data into train, validation, and test data by 7:1:2

along the temporal axis. For source cities, we only use the training

set to train models, and use the validation set for model selection.

For target cities, we use the validation set for parameter tuning, the

test set for evaluation, and the 7/3-day training data are sampled at

the end of the training set (i.e. right before the validation set).

2
https://github.com/deepkashiwa20/DL-Traff-Graph

B DETAILS OF BASELINES
We present details of baseline methods in this section.

• ARIMA: We adopt ARIMA models with 12 AR steps, 1 inte-

gration step, and 1 MA step.

• GWN: We adopt the official implementation
3
.

• GTS: We adopt the official implementation
4
and change the

base model to GWN.

• FT-GWN, FT-GTS: We train the models on source data and

use the source model with the lowest source validation error

to initialize target fine-tuning.

• RegionTrans: We implement RegionTrans as we fail to find

code for it. We use S-Match, i.e. we use a short period of

traffic data to compute region similarity, because we do not

have auxiliary data. We manually tune the parameter𝑤 and

set it at𝑤 = 0.001.

• DASTNet:We adopt the official implementation
5
and change

the base model to GWN.

• ST-GFSL: We adopt the official implementation
6
.

For all baselines with official implementations, we use the default

hyperparameters.

We note that there are other structure learning methods for

traffic forecasting besides GTS, such as MTGNN [39] and AGCRN

[1]. However, we do not take FT-MTGNN or FT-AGCRN as suitable

baselines. The reason is that MTGNN and AGCRN directly optimize

a node embedding matrix E ∈ R |V |×𝑑
to learn the graph structure

Â. As the embedding matrix E is transductive and cannot be reused

on another dataset, FT-MTGNN and FT-AGCRN cannot transfer

knowledge contained in E from one city to another. On the other

hand, GTS learns the graph structure Â by extracting features from

the whole time series X, and thus, the knowledge contained in GTS

can be transferred to another city via fine-tuning, making FT-GTS

a more powerful baseline for cross-city transfer learning.

C IMPLEMENTATION DETAILS OF TRANSGTR
C.1 Base Models
We implement TSFormers following the official code in STEP

7
. We

take GTS [30] and GWN [40] as base structure generators and

forecasting models, respectively. Given the features learned by the

node feature network,

G′
S = 𝑓𝜃𝑛𝑓 (XS) ∈ R(𝑇S/𝑃)×𝑛𝑒𝑚𝑏 ,

GT = 𝑓𝜃𝑛𝑓 (XT) ∈ R(𝑇T/𝑃)×𝑛𝑒𝑚𝑏 ,
(14)

we split G′
S into batches of length𝑇T/𝑃 as G′

S = [GS,1,GS,2, . . .],
and obtain GS = MEAN

([
GS,1,GS,2, . . .

])
. This operation is to

ensure that GS and GT share the same input dimensions. Then, to

learn graph structures from temporal features G, GTS first applies
a temporal feature extractor to obtain node features

Z = Conv1d (ReLU (Conv1d (G))) , (15)

3
https://github.com/nnzhan/Graph-WaveNet

4
https://github.com/chaoshangcs/GTS

5
https://github.com/YihongT/DASTNet

6
https://github.com/RobinLu1209/ST-GFSL

7
https://github.com/zezhishao/STEP

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yilun Jin, Kai Chen, and Qiang Yang

Baselines
Target City PEMSD7M HKTD
Data Number 7-day 3-day 7-day 3-day

Horizon 30 mins 60 mins 30 mins 60 mins 30 mins 60 mins 30 mins 60 mins

Target Only
ARIMA 9.19 14.38 9.28 14.54 11.11 15.23 11.11 15.27

GWN 7.68 10.29 7.88 11.32 9.45 12.15 9.93 12.87

GTS 7.57 9.89 7.76 10.72 9.54 11.63 10.04 12.54

Source LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY LA BAY

Transfer

FT-GWN 7.32 7.47 9.44 9.56 7.67 7.79 10.09 10.66 8.95 8.99 10.50 10.72 9.42 9.40 11.54 11.59

FT-GTS 7.39 7.33 9.26 9.18 7.66 7.78 9.81 9.81 9.06 8.81 10.43 10.06 9.42 9.46 11.00 11.33

RegionTrans 7.29 7.37 9.39 9.58 7.66 7.75 10.13 10.51 8.90 8.89 10.49 10.42 9.45 9.32 11.47 11.39

DASTNet 7.31 7.26 9.27 9.37 7.66 7.77 9.96 10.09 8.96 8.91 10.34 10.34 9.41 9.43 11.22 11.34

ST-GFSL 7.43 7.29 9.31 9.27 7.70 7.75 10.10 9.90 9.00 9.06 10.62 10.55 9.56 9.51 11.36 11.47

TransGTR 7.00 6.99 8.67 8.78 7.49 7.45 9.51 9.42 8.75 8.68 9.76 9.80 9.28 9.18 10.64 10.55
Std. Dev. 0.05 0.02 0.08 0.08 0.06 0.05 0.13 0.07 0.04 0.05 0.05 0.06 0.04 0.06 0.11 0.06

Table 5: MAPE evaluation results (%). LA and BAY stand for METR-LA and PEMS-BAY as source cities, respectively. In each
column, the best result is presented in bold and the second best is underlined.

where Conv1d denotes 1D convolution on the temporal dimension,

ReLU(𝑥) = max(0, 𝑥), and G can be GS or GT . Then, GTS applies
a predictor to output the edge probability between nodes 𝑖, 𝑗

Θ𝑖 𝑗 = 𝜎
(
FC

(
ReLU

(
FC

(
Z𝑖 ∥Z𝑗

))))
, (16)

where 𝜎 (𝑥) = 1

1+exp(−𝑥) is the sigmoid function, FC denotes a fully

connected layer, ∥ denotes vector concatenation, and Z𝑖 denotes
the node features of node 𝑖 from Eqn. 15. Finally, GTS samples a

discrete graph structure Â from Θ as

Â𝑖 𝑗 = GumbelSample(Θ𝑖 𝑗 , 𝜏), (17)

where GumbelSample denotes the Gumbel-Softmax reparameter-

ization [16] used to approximate Bernoulli variables, and 𝜏 is the

temperature parameter. Â𝑖 𝑗 converges to discrete values as 𝜏 → 0.

For GTS, we follow its official implementation and set the tem-

perature parameter as 0.5. For GWN, we also follow its official

implementation and enable the adaptive adjacency matrix.

C.2 Hyperparameters
We set the source TSFormer 𝑓𝜃𝑛𝑓 ,S and the node feature network

𝑓𝜃𝑛𝑓 to have 4 encoder layers, 1 decoder layer, 96 hidden features, 4

attention heads, and a mask ratio of 0.75. We take the pre-trained

TSFormers on METR-LA and PEMS-BAY from STEP as the source

TSFormers , trained with sequence length 𝐿 · 𝑃 = 2016 (i.e. a week),

and patch size 𝑃 = 12 (i.e. an hour). For knowledge distillation, we

set 𝐿𝑠ℎ𝑜𝑟𝑡 · 𝑃 = 864 (i.e. 3 days). We set 𝜆𝑑 = 1, and optimize Eqn.

10 for 100 epochs with learning rate 0.0005.

To learn the structure generator and the forecasting model, we

use 2-layer multilayer perceptrons with 64 hidden units as the de-

coupling modules 𝜃𝑑𝑒𝑐,𝑚 . We set 𝜆𝑟 = 0.01. We alternately optimize

Eqn. 13 and Eqn. 12 for 30 epochs with learning rate 0.001. For

target fine-tuning, we fine-tune 𝑓𝜙 , 𝑓𝜃 on target data with learning

rate 0.001. We adopt Adam optimizers with weight decay 1e-5.

We implement TransGTR with PyTorch 1.9.0 and run all experi-

ments on an NVIDIA Tesla V100 GPUs with 32GB GPU memory.

D ADDITIONAL RESULTS OF MAPE
In this section, we present additional evaluation results with MAPE

as the metric. We follow the same evaluation procedure as Section

5.2 and report the MAPE results in Table 5. We make similar obser-

vations that TransGTR consistently outperforms baselines with an

improvement of up to 6.4%.

E LIMITATIONS AND FUTUREWORK
One major limitation of TransGTR is that, although it achieves

competitive results in longer forecasting horizons (e.g. 60 minutes

ahead), it is less competitive in short-term forecasting. For example,

as shown in Table 1, while TransGTR achieves an improvement

of up to 5% when the forecasting horizon is 60 minutes, it only

achieves a 1-2% improvement when the horizon is 30 minutes. We

hypothesize that the difference is caused by the fact that the opti-

mal graph structures for short-term and long-term forecasting are

different, and thus, an optimal graph structure for 60-minute fore-

casting may not work well for 30-minute forecasting. We consider

it as an important future work.

In addition, TransGTR currently works only for one source city

and one target city, while in practice, it is generally more attractive

to incorporate more source knowledge by learning with multiple

source cities. Therefore, we also identify transferable graph struc-

ture learning across more cities as an important future work.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph-based Traffic Forecasting
	2.2 Structure Learning for Traffic Forecasting
	2.3 Transfer Learning for Traffic Forecasting

	3 Preliminaries & Problem Definition
	3.1 Background and Notations
	3.2 Motivation and Problem Definition

	4 Proposed Method
	4.1 Overview of TransGTR
	4.2 TransGTR Components
	4.3 Transferable Structure Learning with TransGTR

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Comparison
	5.3 Model Analysis
	5.4 Parameter Analysis
	5.5 Case Studies

	6 Conclusion
	Acknowledgments
	References
	A Details of Datasets
	B Details of Baselines
	C Implementation Details of TransGTR
	C.1 Base Models
	C.2 Hyperparameters

	D Additional Results of MAPE
	E Limitations and Future Work

