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I Networks

J Networks are powerful data structures that encode
relationships between objects.

» In many cases, we care not only the object itself, but also its
links with other objects.

[
]

Social Networks Biology Networks Finance Networks

Figure credit to P. Cui's tutorial at DLG workshop, KDD 2019.



INetworks are not learning friendly

 Irregular, high-dimensional, and sparse.
» Degrees of nodes vary (power-law).
» Probably millions of nodes.

» A node only connects with very few other
nodes.

 Therefore, we need powerful learning tools!




INetwork Representation Learning

1 Goal: Transform irregular, high-dimensional and sparse network
data (e.g. nodes, or the network itself) into vectors, according
to network structures and node features.

Representation Vectors
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IGraph Convolutional Networks (GCNys)

J GCNs

» Main idea: For each layer, information is passed between each
other through links, and aggregated by each node.

» Fuse node features with the help of network structures.

Hidden layer Hidden layer

Input = "N = Output
& ~ : :

ReLU < LT ReLU
L]

| S ] —

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.




IGraph Convolutional Networks (GCNys)

J GCNs

» Applications: machine learning tasks in networks

> e.g. Who is likely to know you? What items are likely to be of
your interest?

» Wide industrial applications.
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Node Classification Link Prediction .

Zhu et al. AliGraph: A Comprehensive Graph Neural Network Platform
Ying et al. Graph Convolutional Networks for Web-scale Recommender Systems



IGraph Convolutional Networks (GCNys)

(] Rethinking: In what cases do GCNs perform badly?

] Synthetic data: Stochastic block model with 10 blocks + random
features.

d GCN performs bad when network structures play the key role!

Method Results
Random 10.0+0.1
DeepWalk 99.0+0.1

GCN 18.3+£0.1

Credit to P. Cui's Tutorial at DLG Workshop, KDD 2019.
Perozzi et al. DeepWalk: Online Learning of Social Representations. In KDD, 2014



I Drawbacks

1 Less capable of expressing structures of networks.

» Primarily focus on node features, as the previous

example. @00

(1 What network structures are important? &
» High-order structural units (patterns) are

generally indicative.
» e.g. Motifs [1], graphlets [2].

[1] R. Milo et al. Network Motifs: Simple Building Blocks of Complex Network. Science, 2002. 9
[2] N. Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 2007.



I Drawbacks

(J Can we use very deep GCN:s, just as ResNet?

» Yes. However, even very deep GCNs are unable to

learn complex structures in networks [1]. @00
1 Alternative: Can we design new GCNs that
incorporate such information? &
» Yes. However...

» Only few motifs [2] are selected — insufficient expression.
» All possible structures are selected [3] — poor efficiency.

[1] Oono et al. Graph neural networks exponentially lose expressive power for node classification. In ICLR, 2020 10
[2] Lee, Rossi et al. Graph Convolutional Networks with Motif-based Attention. In CIKM, 2019
[3] Jin, Song et al. GraLSP: Graph Neural Networks with Local Structural Patterns. In AAAI, 2020.



Why selecting a few motifs is insufficient?

1 An Example :

{ Structural Patterns:  Employee w Family \—/ |§‘<1 Follower H:‘“‘;*——ﬁ—-u_-_-_ J
w2 T‘ & / -

.ome====--.._Family Members Blog Followers
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,"' ; il { ( ) { b Ir‘. Ty ': Blog
L i T WL e jr- =
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v
v

Employee Follower Family Employee Follower Family
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IResearch Goal and Challenges

1 Goal: Design a novel GCN framework that adequately describes

and models network local structures 1n an efficient manner, which
means:

» To consider local structures of nodes as a whole.

» To be efficient, which means selecting concise and accurate
representations of structures.

12



IWhy topics?

1 What are topics?

» In NLP (Latent Dirichlet Allocation), topics are defined by a

collection of words, and texts are described by a collection of
topics.

> Slmllar? ‘ Structural Patterns:  Employee /%S“\- Family \7 : \Z<L Follower :J\_._E:“‘“ }
owzzeee Family Members Blog Followers

==~
S & '} Blog
o oe—w. ... 4 Followers
~r  ~—~ ~" '/ _.“Employees
Employee Follower Family Employee Follower Family

13

D. Blei, A. Ng, M. |. Jordan. Latent Dirichlet Allocation, In JMLR, 2013.



I Preliminaries

J Anonymous Walks

» Node is represented by the first position
where it appears.

» Example

» Random walk sequence: (9, 18, 19, 9) o
» Anonymous walk sequence: (1, 2, 3, 1)

» Highly likely generated through a Triadic
triadic closure. Closure

» More theoretical analysis see [1].

[1] Micali and Zhu. Reconstructing markov processes from independent and anonymous experiments. In 14
Applied Discrete Maths, 2016.



ITopic Modeling for Graphs

J An analogy to topic modeling in NLP
» Structural patterns (anonymous walks) < Words
» Sets of walks starting from each node & Documents

Blog Followers

document

word1

word2

Employee Follower Family L W F Menaise i Sl el

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Representative patterns '

15

Concepts for graphs Concepts in NLP



ITopic Modeling for Graphs

(d An analogy to topic modeling in NLP
» Parameters to learn in NLP [1]:
» A word-topic distribution matrix
» A document-topic distribution matrix

topics (r)
/ 4 \
® (é) docs (m) docs (m)
& = : A A
P 2 3 ! \ 5 / \
soccer sports soccer
Obama = | politics Obama
=z iPod g o C iPod
— i — =0
8 < - - 8 <
g Obamacare tech — Cg? Obamacare
~N
N ) 16

[1] Arora et al. Learning Topic Models — Going beyond SVD. In NIPS, 2012



Topic Modeling for Graphs

] Parameters to learn

> A walk-topic matrix U e REXIWII

> A node-topic matrix R € RIVIXK

. Walks around the center node walk - topic distribution
_.-==222--.._Family Members Blog Followers e
Manager. X 5 ;%:5% ~(ﬂ — ONG 20% | |
S e Topie: % 3
o B oA"Y\ Family | AT wi
PN : :g:jjo%'}\ 3'\/;/ Other words; |
: ' ' | oS (=suuctures); ;

5 Structures a@@d : 5’50% Family |
__, 30% Friends :

10% Fellowsi

Employee Follower Family

Representative patterns
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ITopic Modeling for Graphs

(] Not in all cases can we learn topic distributions in NLP
J Example:

» Only one word in each document

» No word co-occurrences > No topics !
 Input cases need satisfying some constraints ...

Document 1 Document 2 Document 3 ! Document 1 Document 2
i word1
word1 word3 i word2 word2 |1
| word3 word4
word2 i
A word5 | ------

x v ”



ITopic Modeling for Graphs

(d An analogy to topic modeling in NLP

Lemma 1.
There is a polynomial-time algorithm that fits a topic model on a graph with

b*K®
e2pby? IVI)'

error €, if NV and the length of walks / satisfy % > 0(

» For more details, see Section 3.1.2 in our paper.

 Example: ol o—6—o—0—6— |

» Performance 1s sensitive to length of
walks.

(=)
(=)

Micro-F1

th
(=

=B~ GraphSTONE(nf) | |
=5~ GraphSTONE

(number of “words” 1n a “document™)

8 10 13 15 20



IGraph Anchor LDA

1 Selection of indicative structural patterns ~ For Example:

» Due to the irregularity of graphs, large Meaningless
number of walk sequences will be
generated.

» Topic model may focus on meaningless
sequences and ignore more important
structural patterns. Representative

» These meaningless sequences are like @
stopwords in NLP. T—O

20



IGraph Anchor LDA

(d Anchor Selection
» Select indicative structures patterns based on
non-negative matrix factorization (NMF) [1].
» NMF is able to find principal components (anchors in our model).
] Topic Learning
» Based on selected anchors [2]

argmin Dk, [ Qjll Z Uy diag™ (01)Q4,
keA

(1 More theoretical analysis and details see Section 3.1.4 in our paper.

20

[1] Lee et al. Learning the parts of objects by non-negative matrix factorization. In Nature, 1999
[2] Arora et al. A practical algorithm for topic modeling with provable guarantees. In ICLR, 2013



Topic Model: Graph Anchor LDA

IOverview of GraphSTONE

P

Anonymous Walk

Walks around the center node

Representative patterns
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IStructuraI-topic Aware GCN

J Multi-view GCN
" = (W-ReLU([Y) ® h{")]) +b)

 Structural-topic Aware Aggregator

h\*) = AGGREGATE

] Unsupervised objective function
» Like GraphSAGE [1]

LT 5L -
£=-log[o(h"Th{"] - q-E

:Un""Pn

L
(o log[o(h!

RTRJ' k-1
| S o e
IR

Structural-topic Aware GCN

Structural-topic \

aware Aggregator

S Graph with latent structures

Latent topic

r E
“
Node feature: p
distribution RN (]?,:'7 | e
.

/ Multi-view GCN
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Aggregation Aggregation
%

v

representation of nodes
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[1] Hamilton et al. Inductive representation learning on large graphs. In NIPS, 2017



IComparison with community detection

J Our model

» Focuses on distribution of local structures, 1.€. ...

-

> will discover structurally similar, but not .~ =5
necessarily connected nodes PN

’
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d Community detection

» Focuses on dense connections [1]
J An example Our model

» Nodes u and v are structurally similar...
» but belong to distinct communities

[1] Jin et al. Incorporating network embedding into markov random field for better community detection. In AAAI, 2019 24



I Proof-of-concept Visualization

(] Synthetic dataset . @-
» G (n) with 3 structures (constituents). |
] Results
» Our model can mark different

structural patterns more clearly b Tlastrafion ot G(n)
-a. *;":. 's. :_.. . ;‘;:';3.‘ _;_8'.:.::: e . o %y .; &
e i 2 @ & o 2."'. “%.-' . s =
W o e i ’531" “f ;'-f a . 3
2 oy Rk O
Py . o “HR s
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(b) Graph Anchor LDA (c) GraphSTONE (d) GraLSP (e) MNMF



I Proof-of-concept Visualization

(J Learned distributions

> Distributions of local structures are different ®- X
among 3 structural topics o-¥

» Our model amplifies indicative structures - %

L] L] L]
within each topic (a) Tlustration of G (n)
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(a) Walk-topic distribution by Graph Anchor LDA (b) Walk-topic distribution by ordinary LDA



I Experiments

J Datasets
Datasets  Type \4 |E| # Classes
Cora Citation 2,708 5,429 7
AMiner Social 3,121 7,219 4
Pubmed Citation 19,717 44,338 3

PPI Protein 14,755 228,431 121

] Baselines
» Struc2Vec [Ribeiro et al., 2017] » GraphSAGE [Hamilton et al.,
» GCN [Kipfetal., 2017] 2017]
» GAT [Velickovic et al, 2017] » Gral.SP [Jin et al., 2019]

27



Link Reconstruction

Cora AMiner Pubmed
Input Model
AUC Recall@0.5 AUC Recall@0.5 AUC Recall@0.5
Struc2Vec 54.29 54.38 47.55 47.63 53.14 53.14
o faabiares Gral.SP 66.28 66.38 65.40 65.50 57.62 57.63
GCN 74.60 74.71 71.98 72.07 59.20 59.22
GraphSTONE (nf) 92.44 92.56 89.87 89.91 87.47 87.48
GCN 94.14 94.26 94.47 94.55 92.23 92.25
GAT 94.66 94.78 95.24 95.34 92.36 92.38
Features Gral.SP 94.39 94.51 94 85 94.89 90.83 90.84
GraphSAGE 95.30 95.42 94.92 95.02 91.52 91.54
GraphSTONE 96.37 96.70 95.94 96.06 94.25 94.27

Table 2: Results of link reconstruction on different datasets.

» GraphSTONE is competitive against all the baselines
» Especially in the absence of node features

28



IVertex Classification

Cora AMiner Pubmed PPI

Input Model Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1
30% 70% 30% 70% 30% 70% 30% 70% 30% 70% 30% 70% 30% 70% 30% 70%
Struc2Vec 17.55 18.92  29.07 31.34 2317 21.80 36.11 38.44 31.29 31.31 41.50 41.49 12.89 13.53 40.49 40.74
No features Gral.SP 58.86 06l1.62 60.88 062.45 43.19 43.03 45.85 4592 38.89 38.84 4588 46.01 10.19 10.72 37.65 37.88
' ' GCN 11.65 11.94 32.30 32.83 14.86 16.81 41.24 4251 35.07 36.51 46.56  47.83 8.75 9.08 36.70 37.46
GraphSTONE (nf) 70.25 7133 7173 72.42 57.11 56.70 5821 5891 56.87 58.88 60.47 60.69 10.28 11.20 38.93 38.96
GCN 79.84 81.09 80.97 81.94 65.02 67.33 06489 066.72 76.93 77.21 76.42 77.49 12.57 12.62 4040 4044
GAT 79.33 82.08 80.41 83.43 68.76 69.10 67.92 68.16 76.94  76.92 77.64 77.82 11.91 11.97 39.92  40.10
Features GralSP 82.43 83.27 83.67 84.31 68.82 70.15 09.12 69.73 81.21 81.38 8143 81.52 11.34 11.89 39.55 39.80
GraphSAGE 80.52 81.90 82.13 83.17 67.40 68.32 66.59 67.54 76.61 77.24 77.36 77.84 11.81 12.41 39.80 40.08
GraphSTONE 82.78 83.54 83.88 84.73 69.37 71.16 69.51 6993 7861 78.87 79.53 81.03 15.55 15.91 43.60 43.64

Table 3: Macro-f1 and Micro-f1 scores of transductive node classification.

» GraphSTONE is competitive against all the baselines
» Especially in the absence of node features

29



IVertex Classification (Inductive)

] Settings

» PPI dataset, including 22 separate protein graphs
» Train all GNNs on 20 graphs, and directly predict on 2 test graphs
» Test nodes are unobserved during training

 Structural topic features generalize well across graphs

Model Macro-f1  Micro-fl
Struc2Vec - -
GCN 12.15 40.85
GAT 12.31 39.76
GralSP 12.59 40.81
GraphSAGE 11.92 40.05

GraphSTONE 18.14 46.02

Table 4: Inductive node classification results on PPIL.

30



I Efficiency

x10*
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Figure 7: Running time on different datasets.

» Anchors improve efficiency
» With anchors, GraphSTONE barely takes more time than GCN
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ISummary

d We present GraphSTONE, a GCN framework that captures
local structural patterns. To the best of our knowledge, it 1s
the first attempt on topic models on graphs and GCN:s.

J We design the Graph Anchor LDA algorithm and a multi-
view GCN unifying node features with structural-topic
features.

 Extensive experiments demonstrate that GraphSTONE is
competitive against its various counterparts.

32



ISee More Details ...

Paper: http://arxiv.org/abs/2006.14278
Code: https://github.com/YimiAChack/GraphSTONE

Lab: https://www.gjsong-pku.cn/
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