COMP5631 Review

Yilun Jin

yilun.jin@connect.ust.hk

December 2020

Yilun Jin (yilun.jin@connect.ust.hk)

COMP5631 Review

December 2020 1 / 36

э

A D N A B N A B N A B N

Outline

- Contents of this course
- 2 Security Backgrounds
- Theory: Cryptography
 - One-key Ciphers
 - Public-key ciphers
 - Hash Functions
 - Applications
 - Protocols
 - Real-world Applications
 - Remarks on final exam

Table of Contents

Contents of this course

- 2 Security Backgrounds
- 3 Theory: Cryptography
 - One-key Ciphers
 - Public-key ciphers
 - Hash Functions
- 4 Applications
 - Protocols
 - Real-world Applications
- Remarks on final exam

Contents of this course

- Security Backgrounds
 - Security Services
- Cryptography
 - Mathematical Backgrounds
 - One-key cipher
 - Public key cipher
 - Key management
 - Hash functions
 - ...
- Applications
 - Distributed Systems
 - Digital Signature
 - E-mail
 - Network Security: IPSec, SSL, VPN, Firewall

→ ∃ →

Table of Contents

Contents of this course

2 Security Backgrounds

- 3 Theory: Cryptography
 - One-key Ciphers
 - Public-key ciphers
 - Hash Functions
- 4 Applications
 - Protocols
 - Real-world Applications
- Remarks on final exam

Security Services

What are the security services covered in the course?

- Confidentiality: Outsiders do not know what is transferred.
- Authentication: Alice is indeed Alice, Bob is indeed Bob.
- Integrity: The message is authentic and not tampered with.
- Non-repudiation: Alice cannot deny her sending out a certain message.
- Anti-replay: You cannot intercept a message at 2 p.m. and resend it at 5 p.m.

Security Services

What are the security services covered in the course?

- Confidentiality: Outsiders do not know what is transferred.
- Authentication: Alice is indeed Alice, Bob is indeed Bob.
- Integrity: The message is authentic and not tampered with.
- Non-repudiation: Alice cannot deny her sending out a certain message.
- Anti-replay: You cannot intercept a message at 2 p.m. and resend it at 5 p.m.

They are key concepts in this course, and you should understand them, including when they should be provided and how to achieve them.

(日) (四) (日) (日) (日)

Attacks

What are the attack models to a security system mentioned in this course?

Attacks

What are the attack models to a security system mentioned in this course?

- Passive Attack: the attacker can only see but not modify the communication.
- Active Attack: the attacker can control the communication channel and modify contents.
- Also for one-key and public-key ciphers, we have known-ciphertext attacks, known (m, c) pair attack, and known public key attack.

Comments: Please be careful about the assumptions when we talk about security, as security must come with certain conditions.

Table of Contents

Contents of this course

2 Security Backgrounds

Theory: Cryptography
One-key Ciphers

- Public-key ciphers
- Hash Functions
- Applications
 - Protocols
 - Real-world Applications
- 5 Remarks on final exam

Theory: Cryptography

This part mainly answers a question: how to provide these security services listed above?

- Confidentiality
- Authentication
- Integrity
- Non-repudiation
- Anti-replay

.

Mathematical Background

Mathematics (discrete maths) are building blocks of cryptography:

- Sets
- Functions
- Greatest Common Divisor (GCD)
- Modulo arithmetic
- Euclidean algorithm
- Multiplicative inverse
- Finite field Z_p or $Z_p[x]$ where p is a prime.

One-key Ciphers

- $(\mathcal{M}, \mathcal{C}, \mathcal{K}, E_k, D_k).$
- Security of one-key ciphers: we face two attacks, knowing ciphertext-only, and knowing plaintext-ciphertext.
- Simple examples: transposition and simple substitution ciphers.
 - Some of you got the concepts wrong in Assignment 2 regarding transposition and substitution.

One-key Ciphers

- Common one-key ciphers: AES, DES, ...
 - A general suggestion: Real world cryptographic applications are generally very complex for security reasons. Therefore, it is neither necessary nor possible to remember them.
 - You won't be asked to compute, e.g. an AES encryption.
 - However, you need to know some principles and design ideas. e.g. What is diffusion/confusion.
- Modes: ECB, CBC. Similarly, you do not need to remember, but you should be able to analyze.
 - e.g. what are the advantages and disadvantages (maybe from the perspectives of error-prone, efficiency and security levels).

Key Distribution

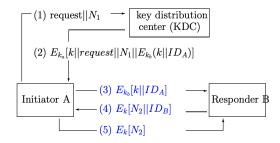
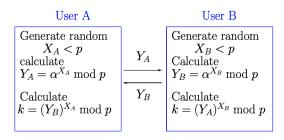



Figure 1: One Key Distribution Protocol Mentioned

- Key distribution, by itself, requires security services.
- For each protocol, it is good for you to understand why these transmissions are necessary. e.g. why nonce, why $E_{k_b}(k||ID_A)$, what services can it provide.

Yilun Jin (yilun.jin@connect.ust.hk)

Key Distribution

• Diffie-Hellman: Passive and active attacks, discrete log problem.

One-key cipher

What security services can one-key ciphers provide?

э

A D N A B N A B N A B N

One-key cipher

What security services can one-key ciphers provide? In general:

- Confidentiality. Note that this is achieved with adequate key distribution.
- Authentication. If A and B share a key k, then a nonce can be used to authenticate each other (also known as challenge-response).

- Definition: $(\mathcal{M}, \mathcal{C}, \mathcal{K}_e, \mathcal{K}_d, E_k, D_k)$
- Security: Given public key (a.k.a. encryption key), cannot derive private key (a.k.a. decryption key).
 - The security guarantee may not be straightforward. Recall Assignment 2, question about RSA.
- One appealing property: key distribution becomes not necessary.
- Applications:

- Definition: $(\mathcal{M}, \mathcal{C}, \mathcal{K}_e, \mathcal{K}_d, E_k, D_k)$
- Security: Given public key (a.k.a. encryption key), cannot derive private key (a.k.a. decryption key).
 - The security guarantee may not be straightforward. Recall Assignment 2, question about RSA.
- One appealing property: key distribution becomes not necessary.
- Applications:
 - Confidentiality: A encrypt a message *m* with B's public key k_B^e , and send to B. (Note: In practice, it is generally avoided. Why?)
 - Key distribution: A generates a session key k, and send $E_{k_R^e}(k)$ to B.
 - Non-repudiation: e.g. A sending out $m \| D_{k_{A}^{d}}(h(m))$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

RSA, ElGamal and related concepts (Euler functions, etc.)

• You need to understand questions like: why this is secure, what if some rules are broken, etc. (Recall Assignment 2 about the common factor.)

Public key infrastructure and Digital certificate

• Hierarchical CA structure. Why?

RSA, ElGamal and related concepts (Euler functions, etc.)

- You need to understand questions like: why this is secure, what if some rules are broken, etc. (Recall Assignment 2 about the common factor.)
- Public key infrastructure and Digital certificate
 - Hierarchical CA structure. Why?
 - Scalability requires distributed CAs.
 - For example, for a course with 300 students, we generally need 2 lecturers, with each lecturer coordinating approx. 3 TAs.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• What security services can public-key ciphers provide?

э

- What security services can public-key ciphers provide?
- Generally,
 - Confidentiality
 - e.g. Public-key cryptography is commonly used for key distribution.
 - Authentication
 - For example, you may have used the command ssh-keygen that allows you to ssh to a server without password.
 - Non-repudiation (by digital signature, detailed later)

(4) (日本)

Hash Functions

- Definition: $h: \mathcal{A} \to \mathcal{A}'$, where \mathcal{A}' denotes some **fixed length** strings.
- Property: one-way (Given x, hard to find m, s.t. h(m) = x); weak collision resistance (Given x, hard to find y, s.t. h(x) = h(y)).
 - You can think about, what will happen if they are violated.
 - Note the difference between the following:
 - Given x, it is hard to find y, s.t. h(x) = h(y).
 - It is hard to find x, y, s.t. h(x) = h(y).
 - Which implies the other? Google "the birthday paradox" for a good explanation.
 - Also note, in general, hash functions are always publicly known. This makes it more important to design non-colliding hash functions (need to withstand attacks from everyone).

イロト イポト イヨト イヨト

Hash Functions

- Instances: HMAC, SHA1.
 - Again you do not need to remember the details (because the details are very complex due to security reasons).
- One common application: Digital Signature.
- Security Services: Generally speaking, hash functions can provide integrity.
 - For example, when we download some large files, we may want to do a MD5 verification.
 - The file owner provides file x, and a precomputed MD5 value v.
 - The user downloads x' and verifies MD5(x') = v.

Table of Contents

Contents of this course

2 Security Backgrounds

3 Theory: Cryptography

One-key Ciphers

Public-key ciphers

• Hash Functions

Applications

- Protocols
- Real-world Applications

Remarks on final example

Protocols

Security Protocols

Lecture 13 introduces various protocols that provide various security services.

- Again, you do not need to remember (as one can create a new protocol very easily), but you should understand, why a protocol provides certain services, and what can be the vulnerabilities.
- e.g. $m \| h(m), m \| D_{k_A}[h(m)], m \| E_k(h(m))$

Real-world Applications

A general notice on real-world applications

The lecture notes may introduce many details, which you don't need to remember all. However, it is always important that you know what are the **security services needed** for each application, and why. Also, what the **tools** are, and what the high level **ideas** are.

- e.g. Digital Signature What is it designed for? design ideas.
- PGP email security What do we need for emails tools design ideas.
- Kerberos Distributed system access control tools why so designed.

Digital Signature

- The primary question: what is a digital signature?
 - Analogous, but **not completely the same** to handwritten signatures authentication, integrity and non-repudiation.
 - Then, what are the design requirements?

Digital Signature

- The primary question: what is a digital signature?
 - Analogous, but **not completely the same** to handwritten signatures authentication, integrity and non-repudiation.
 - Then, what are the design requirements?
 - e.g. easy to verify, vary according to contents, etc.
- Currently used one: DSS, RSA.

(4) (日本)

Secret Sharing

- (Personally I think this topic should appear earlier, in the "Theory" part.)
- Shamir (t, n)-thresholding scheme involves an order t 1 polynomial.

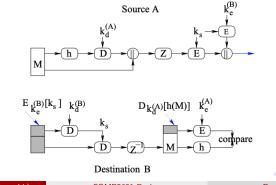
$$a(x) = \left(s + \sum_{i=1}^{n} a_i x^i\right) \mod p$$

- There are many symbols here (s, n, x, p). You need to be careful.
- Security proof: via Linear Algebra.

(日) (四) (日) (日) (日)

E-mail Security

• What are the services that are needed?


э

E-mail Security

- What are the services that are needed? Non-repudiation, integrity, confidentiality, authentication.
- What tools to use?

E-mail Security

- What are the services that are needed? Non-repudiation, integrity, confidentiality, authentication.
- What tools to use? Digital signature, public-key cipher, one-key cipher (for confidentiality), zip, etc.
- Why so designed? You'd better understand a little, e.g. why zipping before encryption.

Distributed System Security

- What kind of attacks is a distributed system vulnerable to, and consequently, what security services should we provide? What are the challenges?
 - Basically, distributed authentication is needed.
- Kerberos is designed to solve **authentication** for distributed systems.
 - Authentication Server (AS), Ticket Granting Server (TGS).
 - The procedure can be connected with some real-world examples.
 - For example, I send an email to my advisor, to ask whether I can gain access to CYT3007. My advisor replies yes. I then send the email to the CYT3007 manager, who will grant me access.
 - More specifically, what protocols are involved, how to authenticate. (You have a question in Assignment 3 on this.)

Network Security: IP Security

- IP is not robust. (As your networking course may tell)
- What does IPSec provide, and how?
 - Authentication, anti-replay (important for network services), integrity.
 - But not necessarily confidentiality.
- Two protocols, ESP (encapsulating **secure** payloads) and AH (**authentication** header), what are the differences?
 - The names tell some of the difference.
 - You do not need to remember the detailed formats.
- Transport mode VS tunnel mode.
 - Analogy: A friend in the US wants to send a package to your home in mainland China, but he does not know Chinese.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Web Security: SSL

SSL:

- Remember that it is built upon TCP, which should be **connection-oriented** and **reliable**.
- Concepts: Session, connection and states, and their relationships.
 - A session is shared for multiple connections.
 - There are both connection and session states.
 - What are in the states, and which of them change between sessions/connections?
 - What is a pending state? (Recall the "change cipher spec".)
- Protocols: Handshake, alert, record.
 - What information is exchanged during handshake?
 - The handshake is more complex than the TCP handshake, why?

(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

Firewall

- Purpose: Basically access control.
- Different types of firewalls:
 - Packet filtering, Session filtering.
 - Circuit gateways, application gateways...
 - This lecture basically involves little cryptographic protocols and is relatively easy to understand.

.

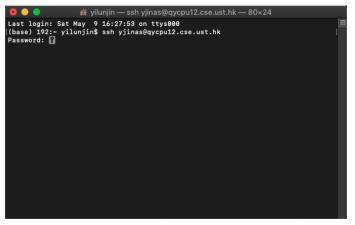
VPN

VPN: Virtual Private Network

• What does it provide? Recall "Virtual Private"

э

A D N A B N A B N A B N


VPN

VPN: Virtual Private Network

- What does it provide? Recall "Virtual Private"
- Authentication, confidentiality (virtual), and integrity (required by all network services)
- Key technique: Tunnel, which supports "virtual".
 - The data is encapsulated with a header which contains routing information.
 - Encapsulated frames are transported over the Internet like ordinary frames.
 - Recall tunnel mode in IPSec.
- PPTP, L2TP. No details required, but understanding of security services is required.

Secure Shell

Establish a secure channel for two computers for remote control, file transfer, etc.

Figure 2: My Secure Shell to connect with lab machines.

Yilun Jin (yilun.jin@connect.ust.hk)

COMP5631 Review

< ∃⇒

Secure Shell

- Three layer: Transport, User Authentication, Connection
- Transport Layer does the following:
 - Parameter Negotiation:
 - Key exchange: Exchange master key, and each end derives private key. (This is similar to SSL.)
 - Server authentication: Each server has a public-private key pair. On my computer there is a file known_hosts, that saves a list of known hosts.
- User Authentication: The server authenticates the user by e.g. public key (Maybe you have used the ssh-keygen), or password.

(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

Table of Contents

- Contents of this course
- 2 Security Backgrounds
- 3 Theory: Cryptography
 - One-key Ciphers
 - Public-key ciphers
 - Hash Functions
- 4 Applications
 - Protocols
 - Real-world Applications

Remarks on final exam

A D F A B F A B F A B

Remarks on final exam

The final exam will be on December 10th, open-book, take-home, and will only consist of several (maybe 10 or 20) multiple choice questions.

- However, do not think them as easy questions. They will be hard, and you won't expect to find answers on textbooks or slides.
- As I said before, open-book means that remembering details is useless. Rather you should understand the relationship between techniques/protocols and security services, and why is the relationship.
 - e.g. what services can a tool provide, and how?
 - What problems are considered as 'hard' problems in cryptography?
 - Given a protocol, what can it provide?
 - Given an application, what security property should it have?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Questions?

Thanks!

- TA: Yilun Jin
- yilun.jin@connect.ust.hk
- Feel free to ask questions related to the course via email.

э

(日) (四) (日) (日) (日)