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ABSTRACT
To depict ubiquitous relational data in real world, network data

are widely applied in modeling complex relationships. Projecting

vertices to low dimensional spaces, quoted as Network Embedding,

would thus be applicable to diverse predicative tasks. Numerous

works exploiting pairwise proximities, one characteristic owned

by real networks, the clustering property, namely vertices are in-

clined to form communities of various ranges and hence form a

hierarchy consisting of communities, has barely received attention

from researchers. In this paper, we propose our network embedding

framework, abbreviated SpaceNE, preserving hierarchies formed

by communities through subspaces, manifolds with flexible dimen-

sionalities and are inherently hierarchical. Moreover, we propose

that subspaces are able to address further problems in representing

hierarchical communities, including sparsity and space warps. Last

but not least, we proposed constraints on dimensions of subspaces

to denoise, which are further approximated by differentiable func-

tions such that joint optimization is enabled, alongwith a layer-wise

scheme to alleviate the overhead cause by vast number of parame-

ters. We conduct various experiments with results demonstrating

our model’s effectiveness in addressing community hierarchies.

CCS CONCEPTS
•Networks→Network structure; • Information systems→ Col-
laborative and social computing systems and tools; • Mathematics
of computing → Graph theory.
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1 INTRODUCTION
Network data have been ubiquitous due to its precise depiction of

relational data. Traditional network algorithms being not applicable

due to its forbidding computational costs, network embedding algo-

rithms, projecting vertices within networks to lower-dimensional

vector space while preserving general proximity between nodes,

have proved to overcome such complexity and hence being appli-

cable to a wider range of prediction tasks including link prediction

and classification [14, 28, 37].

Apart from general proximity between pairwise nodes, a char-

acteristic property real-world networks possess is the clustering

property, namely nodes would tend to form communities with

varying size and range at a far higher frequency than randomly

connected. In addition, community structures are highly informa-

tive in that they shed light on how the network is inclined to be,

with connections within communities being considerably more

probable than those across communities, and hence provide net-

work structures with resistance to noise links that occur randomly.

Even more remarkably, not only do vertices form communities, the

communities thus formed are commonly organized in a hierarchi-

cal manner as well, which proves to be significantly indicative of

functional components of the underlying networks [3, 4].

Ubiquitous and instrumental as community structures and their

hierarchy are, relatively few attention has been devoted to such

properties. Typical attempts trying to preserve communities within

vector spaces are MNMF [34] and GNE [7]. MNMF, aiming at pre-

serving community structures within networks and reflect them
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in embedding networks ignores the hierarchy across communities,

while GNE, preserving hierarchies across communities through

spherical projection, suffers from drawbacks that, spherical pro-

jections tend to propel vertices across communities undesirably

far from each other, resulting in incorrect modeling for vertices

from different communities. In addition, communities lying deep

within the hierarchy are treated with extremely small spheres yet

possessing the same dimensionality as their shallower counter-

parts in GNE, and hence did not sufficiently exploit the inclusion

relationship between high-level and lower-level communities.

It is hence concluded that, utilizing communities as well as their

hierarchy is a field of pressing importance yet demanding chal-

lenges, with relatively few attempts devoted to it. Specifically, we

summarize the following challenges yet to be resolved such that

hierarchical community structures can be utilized.

(1) Sparsity Intuitively, communities lying deep within the hi-

erarchy are less inclusive than their shallower counterparts,

and hence possess less variance within themselves. There-

fore, the original space in which the whole network is em-

bedded to will be increasingly inappropriate for embedding

deeper communities as they require far less variance to be

encoded than is enabled by the original space. Consequently,

embedding thus learned will suffer from extreme sparsity

and as a result, noise arises, which will undermine the rep-

resentation for deeper communities. We hence conclude

that the sparsity issue for low-level communities should be

addressed, and that dimensionality of spaces where com-

munities reside should vary corresponding to their depth, a

requirement scarcely met by previous research works.

(2) Space Warps As previously mentioned, spherical projec-

tion used by GNE suffers from restrictions imposed by the

radii of the spheres, which decay exponentially as the hierar-

chy deepens. Consequently, it is common for vertices across

communities to be exponentially distant than those within

the same community, thus inappropriately underestimating

density of links across communities and condensing links

within communities. It is hence deduced that a desirable

figure to which communities are projected to should be de-

signed to ensure the correct modeling of nodes within and

across communities and alleviate space warps.

(3) “Curse” of Depth Just like the “Curse of Dimensionality”,

when encountered with extremely deep hierarchies, it is

not trivial that a sensible scale in which communities reside

be still maintained, a counter-example of which would be,

again, GNE. As explained previously, the radii of spheres to

be projected to shrink exponentially with increasing depth,

resulting in unduly tiny radii which may cause practical

problems including underflow.

To address these challenges, we propose Subspace Network Em-

bedding, abbreviated SpaceNE, to model the community structures

in networks along with their hierarchy. Specifically, we observe

that subspaces within Euclidean space inherently follow the or-

ganization of hierarchy. For example, in three-dimensional space

as illustrated in Figure 1, planes and lines, which are subspaces

of varying dimensions reside within the 3-d space, while as lines

reside within planes and planes within the 3-d space, an inherent

hierarchy is illustrated. In addition, natural metrics of measuring

distances between pairwise subspaces exist, such as angles between

pairwise planes and lines, which can be easily adopted to measure

similarities between communities dwelling within subspaces of the

same dimensions. Both the aforementioned factors, inherent hierar-

chy and handy metrics, contribute to our modeling of hierarchical

community structure using subspace.

In addition, we are delighted to find that subspaces possess other

appealing properties that can further enhance our modeling of

community structures and their hierarchy. On one hand, the di-

mensionality of subspaces is highly flexible, which corresponds

to the inconsistency of variance within communities of different

depth within the hierarchy and alleviates the sparsity issue, thereby

filtering undesirable noise and enhancing our representation. On

the other hand, subspaces are flat and possess consistent scale of

distance regardless of their dimensionality, which maintains dis-

tances within a community and across communities at comparable

scales while allowing deep hierarchies to possess a similar scale of

distance to their shallower counterparts, facilitating the modeling

of arbitrarily deep community hierarchies.

Consequently, we extended DeepWalk [23], which preserves

general proximity between pairwise vertices though co-occurence

in random walks. In addition to proximity between vertices, with

subspaces to model hierarchical community structures, we project

vertices according to their communities, into subspaces of corre-

sponding dimensions, during which objectives preserving simi-

larities within a community and across communities are adopted,

such that representations for communities, i.e. subspaces can be

jointly optimized along with node representation vectors. What

is more, we impose constraints on the dimensions of subspaces

used to represent communities, keeping them as low as possible,

such that a minimal level of redundancy and noise is kept, which

was further approximated according to matrix algebra and convex

optimization into a differentiable one, such that it can be optimized

simultaneously along with proximity between pairwise vertices

and communities.

To summarize, we make the following contributions:

• We propose Subspace Network Embedding model, abbrevi-

ated SpaceNE, introducing subspaces to the field of commu-

nity preserving network embedding, which, to the best of

our knowledge, is the first attempt of introducing subspaces

into network representation learning.

• We design elaborate objectives preserving proximity be-

tween pairwise nodes, across communities, along with con-

straints on subspace dimension which was then approxi-

mated by a differentiable one, leading to efficient optimiza-

tion of our model.

• We conduct extensive experiments on several real-world

datasets, where experimental results demonstrate that SpaceNE

is significantly more competitive to its various counterparts

on various applications.

2 RELATEDWORK
Hierarchical Network. Many real-world systems can be mapped

into networks with hierarchical community structure [19][21]. Gen-

erally, a network community refers to a dense sub-network in which
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(c) 3-d hierarchical subspace(b) Hierarchical community structure

d-dimensional subspace

(d-1)-dimensional subspace

(d-2)-dimensional subspace

(a) Network

Figure 1: The correspondence between the community hierarchy and the subspace hierarchy

vertices are densely connected one another [20]. The communities

can be recursively divided into sub-communities. Thus, commu-

nities on different scales are hierarchically organized like a tree.

Exploring the hierarchical community structure of network has

proved to possess a wide range of applications, including scientific

collaboration analysis [10], protein function prediction [26] and

so on. Thus more and more works pay attention to networks con-

taining a hierarchy of communities [3, 25]. [3] claims that knowing

the hierarchical structure of complex networks is useful for link

prediction tasks.

Network Embedding. Network embedding aims at embedding

the network data to a low-dimensional space [5, 8, 33]. Deepwalk

[23] learns vertex representations by using truncated random walk

and Skip-Gram. LINE [28] first proposes the method to preserve

the first-and second- order proximity among nodes. Struc2Vec [24]

defines a hierarchy to measure node similarity at different scales,

and constructs a multilayer graph to describe structural similarities.

As an important property of the network, the community struc-

ture has been extensively studied in network embedding. Recently,

as for preserving the hierarchical community structure of the net-

work, several models have been proposed. [34] leverages the matrix

factorization to integrate the community structure information into

the node embeddings. [22] learns the network representations in

the hyperbolic space. Its limitation is the learned representations

are hyperbolic vectors, which can not be applied to the majority

machine learning algorithms whose inputs are usually Euclidean

ones. Inspired by the structure of the Galaxy, [7] presents GNE

that embeds the communities at different scales onto the surface of

the spheres with different radii. However, this algorithm has obvi-

ous shortcomings. With the level increasing, the radii of spheres

decrease quickly, which limits the representation spaces for the

communities in deep levels. Therefore, the optimizing algorithm

with a constant learning rate can not learn the proper representa-

tions for them.

Subspace. A subspace is a subset of a topological space endowed

with the subspace topology [27]. Subspaces, inherently of lower

variance than the original space, can be used to approximate data

with higher dimensions such that only the principal features are

kept within. Typical andwidespread examples of utilizing subspaces

are low-rank approximations and subspace clustering. Classical

relatedwords include [6, 15, 31], which all have achieved convincing

results in their corresponding fields. Nonetheless, though widely

explored in other fields, subspaces are largely overlooked in the

field of network representation learning.

3 PRELIMINARIES AND PROBLEM
STATEMENT

Definition 1 (HierarchicalNetwork). LetG(V ,E) denote an undi-
rected network with V as the vertex set and E being the edge set.

T denotes the tree representing hierarchy of communities within

the networkG with depth L and node setC . For a node c ∈ C , ch(c)
and pa(c) denotes its set of children and its parent node within T ,

respectively. We let Cli ⊆ V denote the set of the i-th community

within the l-th layer. Specifically, C1

1
= V is the original set of

vertices of G.

Definition 2 (Subspace). LetU be the vector space Rn .Us , a non-
empty subset of U , is called a subspace

1
if for any element pair

x ,y ∈ Us and any scalar λ ∈ R, x + y ∈ Us , λx ∈ Us [27][15].

Subspace has several important properties mentioned as follows to

model hierarchical network embedding:

• Hierarchical structure. Subspaces within Euclidean space

inherently follow the organization of hierarchy. For example,

in three-dimensional space as illustrated in Figure 1, com-

munities can be vividly depicted as planes, or 2-d subspaces

of the 3-d space, and sub-communities can be consequently

modeled as lines, or 1-d subspaces, residing in their corre-

sponding communities, or planes. In addition, vertices, rep-

resented by points in Euclidean space, can reside in arbitrary

subspaces of arbitrary dimension.

• Lower Dimensional Representation. The subspaces has
proved to be instrumental in extracting principal features

from extremely high-dimensional data, demonstrated dis-

tinctively by the famous PCA [35] decomposition algorithm,

which selects the subspaces in which highest variances of

the original data lie. Consequently, we would anticipate that

subspaces would serve as a sieve, preserving those principal

characteristics of the original networks and communities.

Definition 3 (Hierarchical SubspaceNetwork Embedding). The
hierarchical subspace is denoted as T ′

with a depth of L′.W =

1
There is no loss of generality in assuming that subspaces are linear, i.e., they all

contain the origin. For the affine subspaces that do not contain the origin, we can

always increase the dimension of the ambient space by one and identify each affine

subspace with the linear subspace that it spans. So we always use ‘subspace’ to denote

‘linear subspace’ and ‘affine subspace’ in this work.
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[w1,w2, ...,wn ] ∈ R
n×m

denotes a basis of a certain subspace and

W l
i denotes the i-th subspace at the l-th level ofT ′

. The upper bound

of the dimension of subspace is a hyper parameter. The descending

trend of subspace dimension can be linear (eg. b−a ·l ) or non-linear
(eg. ⌊log(b − l)⌋), where b and a are positive integers. Community

cli should be corresponding toW l
i in a hierarchical subspace. The

objective of hierarchical community structure preserving network

embedding is to learn the subspace representations (corresponding

base vectors) of the input hierarchical network.

4 SUBSPACE BASED HIERARCHICAL
NETWORK EMBEDDING

Subspaces follow a hierarchy naturally, which inspires us to come

across a subspace based hierarchy preserving network embedding

approach. SpaceNE preserves pairwise proximity and proximities

between hierarchical communities, including structural informa-

tion within a community and among communities.

4.1 Preserving Pairwise Proximity Between
Vertices

We propose that preserving pairwise proximity between vertices

should be most fundamental in general network embedding prob-

lems. Hence we first address the pairwise proximity between nodes

similar to DeepWalk, as mentioned before.

min

®u
ℓ1 =

∑
vi ∈V

∑
vj ∈N (vi )

logσ (
 ®uj − ®ui


2
)

+ k · Evn∼Pn (v)[logσ (− ∥ ®ui − ®un ∥2)],

(1)

where σ (x) = 1/(1 + e−x ) is the sigmoid function, ®ui is the rep-
resentation vector of vi , N (vi ) denotes the “neighborhood” of vi ,
i.e. vertices co-occuring with vi in random walks, and Pn (v) is the
noise distribution for negative sampling.

4.2 Preserving Proximity of Hierarchical
Communities

4.2.1 Preservation of Structure within Individual Communities. Ver-
tices from the same community should be closer to each other than

those from different communities, thus we project nodes from the

same community into the same subspace. To integrate the hierar-

chical subspace information, for each community cli in layer l we
have the following constraint:

rank(U l
i ) ≤ dl , (2)

where dl is the dimension of the subspace in layer l , a hyper-

parameter, andU l
i is a matrix each line of which is a representation

vector of a vertex, belonging to community cli . Each vertex vi in its

corresponding community has a new vector representation under

base-vectors of the corresponding subspace, which is denoted as

®uli . Hence the variable ®ui in Eq. (1) becomes an alias of ®u1i .
Considering that such constraints make the problem difficult to

solve, we equivalently transform the way of introducing constraints

through vertex projection layer by layer. Specifically, we change

the decision variables from ®u1i ∈ Rd1 into ®uLi ∈ RdL where dL < d1,

and introduce auxiliary decision variables Slj ∈ R
d l×d l−1

denoting

1

2

3
4

a

b

c

Figure 2: Illustration of relationship preservation among
communities. Distance of node embeddings may change be-
fore and after projection, as there are angles among the pro-
jection subspaces.

the projection matrix, i.e. there exists the following relationship:

®uli = Slj ®u
l−1
i , ®u

l−1
i = Slj

†
®uli , (3)

where j is the index of community clj that the vertex vi belongs to

in the l-th layer, and Slj
†
is the pseudo-inverse of the matrix Slj .

4.2.2 Preservation of Structure among Communities. However, the
relationship among communities may be lost if only the hierar-

chical projection method above is used. Actually, the relationship

among different subspaces is able to reflect the relationship among

communities after adding the subspace constraints. For example, as

shown in Fig.2, the projected position of node 3 in the grey plane is

b, and c in the green plane. The distance between node 2 and node

3 varies with the planes to which node 3 is projected. The main

idea of formulating this objective is to minimize the difference of

subspace similarity and community similarity between every two

communities i, j, namely,

min ℓl
2
= | |∆l − Γl | |F , (4)

where ∆l
is a matrix, each entry of which ∆li, j is the similarity

of two communities cli and c
l
j in the original graph. Similarly, Γli, j

is the similarity of the two subspaces . The method of calculating

∆ can be customized according to the datasets. For example, the

community similarity, based on PMI [13] or common neighbors [7],

etc, is reasonable. The relationship between two subspaces can be

measured by the inner product of projection matrices [27]. Thus

the subspace similarity Γli, j can be defined as

Γli, j = | |SljU
l−1
i (SljU

l−1
i )T | |F . (5)

4.2.3 Low Rank Representation. As stated before, inconsistent de-

mand for dimensionality poses a significant threat on the repre-

sentation of subspaces. On one hand, inappropriate dimensionality

for modeling communities, especially those lying deep within the

hierarchy, would result in redundancy in dimensionality and hence-

forth sparsity and noise, which would compromise the quality of

representations of vertices and communities. On the other hand, in

order to get rid of undesirable noise while conserving the principal

features of the original networks, we would prefer a slimmer sub-

space such that only the variances that are vital enough are kept

while leaving those obscure behind.
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Consequently, we are motivated to impose penalties on the di-

mensionality needed for subspaces, which corresponds to the rank

of projection matrices. Therefore, we add the following constraint

on projection matrices:

min

S
ℓlr eд =

k∑
i=1

rank(Sli ), (6)

where rank of a matrix is the number of linearly independent

columns which it contains and k is the number of communities at

each layer. Since S ∈ Rm×n
is the projection matrix, the projected

space lies within the column space of S . We can minimize the rank

of S with Eq.(6) to reduce the dimension of the projected subspace.

Eq.(6) can restrict Sli to be of rank as low as possible, resulting in

desirable low-dimensional subspaces, which further improves the

capability of denoising.

Considering all the objectives mentioned above, the overall ob-

jective function is:

min

U L,S
ℓ3 = ℓ1 + α

L∑
l=1

ℓl
2
+ λ

L∑
l=1

ℓlr eд , (7)

where α and λ are the coefficients regulating the contributions of

two community preserving targets.

5 LEARNING PROCEDURE
The optimization of Eq.(7) is extremely difficult due to the following

two problems. First, it has a massive number of parameters that

need to be optimized at a single iteration. Thus directly optimiz-

ing may lead to vanishing gradient [11]. Second, it has a discrete

term of ranks, which cannot be solved directly by differentiating.

Correspondingly we propose two alternatives to address the above

problems.

5.1 From Global to Layer-wise Optimization
It is obvious that the overall objective function has a massive num-

ber of complicated parameters, such as matrix inversion, which

may lead to an unacceptable inefficiency and vanishing gradient.

Inspired by the layer-by-layer training in auto-encoder [12], we

consider learning the parameters hierarchically in our method.

Specifically, we first optimize pairwise proximity Φlocali through

Eq.(1), which is followed by adding the constraints to Φlocali of

each layer in the subspace hierarchy. On the other hand, unitary

transformation does not change the relative position of vectors [36],

thus it’s reasonable to learn the parameters layer by layer, allevi-

ating the need to project nodes all the way down to the bottom of

the hierarchy.

The hierarchy subspace constraints are essentially projections

among spaces, while other constraints are naturally disassembled in

the layer-wise optimization. This projection is similar to the general

idea of PCA [35], which selects the spaces in which maintains the

nearest reconstruction of vertices before and after projection with

high efficiency. Based on the following Lemma.1, we extend PCA

to describe the projection of all inner-community nodes in the

subspace:

min ℓl
4
=

k∑
i=1

−tr ((Sli )
TU l

i (U
l
i )
T Sli ), (8)

where tr (M) is the trace ofM . Eq.(8) constructs a low-dimensional

representation of the data, which omits complicated and inefficient

matrix inversion, and improves the capability of denoising further.

Lemma 1. If Eq.(8) achieves desired optimal solution, the optimal

result learned from recursively optimization is the same as that of

joint optimization (Eq. (1)) with constraints in Section 4.2.1.

Proof. Let d(®ui , ®uj ) be the Euclidean distance of vertices vi
and vj . The vector ®ui after projection is denoted as ®u ′i . Based on

Trigonometric Inequalities [1] in Euclidean Space, here comes

d(®ui , ®uj ) ≤ d(®ui , ®u
′
i ) + d(®u

′
i , ®u

′
j ) + d(®uj , ®u

′
j ),

d(®u ′i , ®u
′
j ) ≤ d(®ui , ®u

′
i ) + d(®ui , ®uj ) + d(®uj , ®u

′
j ).

The projection of PCA[35] maintains the nearest reconstruction of

vertices before and after projection, which means

lim

Eq .(8)→0

d(®ui , ®u
′
i ) → 0,d(®uj , ®u

′
j ) → 0

Thus,

d(®u ′i , ®u
′
j ) → d(®ui , ®uj ).

It means that relationships among vertices before and after projec-

tion are maintained. □

5.2 From Discrete to Differentiable
Optimization

Rank minimization turns out to be an NP-hard combinatorial prob-

lem that is computationally intractable in practical cases. Mean-

while, the rank minimization is discontinuous, so the objective

function cannot be optimized with SGD. The tightest possible con-

vex relaxation of function (13) is to replace the rank with the nuclear

norm equal to the sum of its singular values [2]:

rank(M) ≈ ||M | |∗, (9)

where | |M | |∗ is the nuclear norm of matrixM .

As nuclear norm is discontinuous, it cannot be optimized with

SGD as well. [18] gives a smooth approximation via conjugate for

nuclear norm. It is the sum of the Huber penalties applied to the

singular values ofM .

| |M | |∗ ≈
∑
i
ϕµ (Θi (M)), (10)

where Θi (M) is the singular values ofM , and ϕµ is

ϕµ (Z ) =


Z 2

2µ
, |Z | ≤ µ

|Z | −
µ

2

, |Z | > µ

(11)

where µ controls accuracy and smoothness, Z is the result ofΘi (M).

Thus the approximated regularization term ℓ′r eд is Eq.(12), and

the overall objective function ℓ in the l-th layer is approximated

as Eq.(13):

ℓlr eд′ ≈

k∑
i=1

∑
m

ϕµ (Θm (Sli )), (12)

min

U L,S
ℓl = ℓl

4
+ αℓl

2
+ λℓlr eд′ . (13)
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It should be noted that, to ensure that the base vectors of the

subspace of each level are orthogonal, Sli is orthogonalized [1].

Another advantage of layer-by-layer learning is to replace the

pseudo-inverse calculation in the origin problem with a matrix

orthogonalization calculation over Sli of each layer.

Algorithm 1 The SpaceNE algorithm

function LearnFeatures(Network G, Hierarchical Clustering
Tree T )

Ulocal
= minimize ℓ1 with Adam (see Eq.(1))

U = RecursiveOptimization (c1
1
, T , Ulocal

)

return U, S

function RecursiveOptimization(Current node cli , Hierachical

Clustering Tree T , Representation Set Ulocal
)

if l = L then return U, S
{Sl+1j } = minimize H

(l )
i with Adam (see Eq.(13))

for all cl+1j ∈ Ch(cli ) do

Sl+1j = Orthoдonalize(Sl+1j )

U l+1
j = SljU

l
i

for all cl+1j ∈ Ch(cli ) do

U, S = RecursiveOptimization (cl+1j , T , Ulocal
)

return U, S

5.3 The Subspace Algorithm
Algorithm 1 is the pseudocode of SpaceNE. In the function Learn-
Features, we optimize the local objective Eq.(1) to learn the node

embedding vectors preserving local information, and then adjust

the embedding vectors to add subspace constraints from top to

down. In the function RecursiveOptimization, the set of projection
matrices {Sl+1j } can be obtained by optimizing the objective (13)

and orthogonalization. We obtain the node representations of the

next layerU l+1
j by matrix multiplication.

Time Complexity Analysis Without loss of generality, we as-

sume that T is a k-ary tree and the dimension of subspaces in l-th

layer decreases exponentially, i.e. dl = ⌊logk (D − l)⌋. SpaceNE
should be done on each tree node layer by layer and the learning

procedures on the same layer tree nodes can be parallelized. For

a certain node cli in T , the complexity of calculating the loss ℓl
2
is

O(k(logk (D−l))
2), and the complexity of the loss ℓl

4
isO((k logk (D−

l))2). Therefore, the time complexity of optimizing the overall loss

ℓ isO(E(k logk (D − l))2) where E is the number of training epochs.

Thus the total complexity of SpaceNE is O(|V |E(k logk D)
2). The

optimization algorithm is implemented on the Tensorflow platform,

thus can be accelerated with GPU.

6 EXPERIMENTS
6.1 Experiment Setup
Datasets. We employ the following real networks in the Facebook

social networks [30]. The datasets in our paper and their basic

attributes are shown in Table 1. Moreover, synthetic network con-

sisting of a 6-layer hierarchy is used to evaluate the performance

of hierarchical structure preservation. We generate a self-similar

network with a hierarchical network generation algorithm intro-

duced in [10]. Specifically, we first generate a 6-layer trident tree,

and use the leaves of the tree as the nodes of the network. Then we

add edges to the node pairs with probability proportional to path

length among them in the k-ary tree.

Datasets Vertices Edges Layers Classes Labels

Amherst 2314 96394 2 5 ✓
Georgetown 9414 425639 2 5 ✓

UC 16808 522148 2 5 ✓
Sync_6 729 21735 6 × ×

Sync_show 125 982 4 × ×

Amherst_noise 2314 91409 2 5 ✓

Table 1: Data set statistics and properties.

Relevant Algorithms. In the experiments, we compare SpaceNE

against the following baselines:

• MNMF [34]: a single-layer community structure preserv-

ing baseline, which integrates the community information

through a matrix factorization.

• GNE [7]: a multi-layer community structure preserving base-

line, which embeds communities onto surface of the spheres.

• DeepWalk [23]: a method combines truncated random walks

[9] with Skip-Gram [17] model to learn vertex embeddings.

• LINE [28]: a popular baseline based on preserving the first-

and second- order relational information among vertices.

• Struc2Vec [24]: measures node similarity at different scales,

and uses a multilayer graph to encode structural similarities.

• SpectralClustering [29]: learns the vertex representations by

factorizing the Laplacian Matrix.

Parameter Settings. We conducted many experiments, and the

optimal default parameters are selected as follows: µ = 10, α = 1,

λ = 10
3
. In our experiments, the embedding sizem of all models is

64.

Besides, the parameter setting of comparison models follows the

recommended settings in relevant code packages. Specifically, for

DeepWalk, the walk length is set to 40 and window size is set to 10.

For GNE, the scaling radius is set to 3.0, λ is set to 0.2, θ is set to 3,

the initial radius is set to 10
5
, min radius is set to 0.05, max radius

is set to 0.25, and the scaling radius is set to 3.0. For LINE, we set

the number of negative samples used in negative sampling as 5, the

starting value of the learning rate as 0.025, and the total number

of training samples as 100M. We consider both fisrt- and second-

order information in LINE. For Struc2Vec, the walk length is set to

10, the number of walks is set to 80, the stay probability is set to

0.3. For MNMF, the number of clusters to is set to 10, λ is set to 0.2,

β is set to 0.05, η is set to 5.0, the parameter “lower-control” is set

to 10
−15

. For SpectralClustering, we use PCA to reduce dimension

of the laplacian matrix.

6.2 Alleviating Sparsity
To evaluate the performance of alleviating sparsity of SpaceNE, we

conduct experiments on node classification and its resistance to

randomly added noises on edges, with respect to link prediction.
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Model Amherst Georgetown UC

30% 50% 70% 90% 30% 50% 70% 90% 30% 50% 70% 90%

SpaceNE 92.52 93.11 93.74 95.09 56.12 56.42 56.92 56.54 88.69 89.02 89.23 90.07
GNE 93.17 93.33 93.26 93.52 52.19 53.53 53.75 53.12 87.78 88.42 88.42 87.57

MNMF 87.11 88.04 89.23 89.96 51.52 51.69 51.60 53.25 87.89 87.95 88.09 88.10

DeepWalk 91.09 91.26 91.71 92.03 51.45 53.25 53.76 54.03 88.35 88.42 88.51 88.63

LINE 91.11 91.53 91.89 91.67 51.35 51.93 52.18 52.38 87.71 87.88 87.95 87.53

Struc2Vec 72.72 73.35 73.92 77.23 46.85 47.44 48.33 47.59 87.96 87.89 88.11 88.25

SpectralClustering 72.88 73.51 73.89 74.41 49.67 50.02 50.79 51.23 84.23 84.35 84.31 84.21

Table 2: The multi-label classification results on different percentages of train datasets

6.2.1 Node Classification. Three real-world social networks of the

Facebook datasets with a four-layer hierarchical tree (including root

and leaves) are used in the vertex classification experiment. The two

intermediate layers are divided by the enrollment year and major,

respectively. For MNMF, we use enrollment year as an indicator

for community division. The learned representations are used to

classify the vertices into a set of labels. The classifier we used is

Logistic Regression, and the evaluationmetric is Accuracy. Different

percentage of nodes are sampled randomly for evaluation, and the

rest are for training. The results are averaged over 10 different runs.

Table 2 shows that SpaceNE performs well in most cases. Al-

though MNMF, GNE and SpaceNE all take community information

into consideration, SpaceNE still performs better, which means the

low-rank representation of SpaceNE plays an important role. Al-

though considering some global network structure, Struc2Vec does

not work very well. Compared with Amherst, our model performs

better on the Georgetown dataset and the UC dataset. It is because

our model is more stable on larger datasets after integrating the

hierarchical community structure information.

6.2.2 Resistance to Random Noise. Besides preserving the deep hi-

erarchical community structure, SpaceNE tends to be more resistant

to random noises due to the inherent properties of subspaces, hence

generating node embeddings robust enough regardless of noise. On

one hand, the reconstruction optimization term (Eq.(8)) of SpaceNE

is similar to PCA, which maintains the noise reduction feature of

it. On the other hand, the low rank optimization term (Eq.(6)) of

SpaceNE can learn the most important features of the network and

then improve the resistance to noise[15]. In order to verify the re-

sistance to noise of SpaceNE, we conduct several experiments and

compare the results of SpaceNE with other community or global

structure preserving methods (MNMF, GNE and Struc2Vec). We

construct the noisy data according to the method introduced by

[32]. Specifically, the dataset we used is Amherst_noise (see Table 1).

We contaminate Amherst by adding 5% the number of total edges

and delete 5% of them in Amherst randomly. Then, we conduct link

prediction tasks using SpaceNE and its counterparts on Amherst

and Amherst_noise datasets for comparison.

The results are shown in Table 3. The values in Table 3 rep-

resent the reduction in percentage in precision and recall of the

algorithms after adding the noise. “Gain of SpaceNE” is the im-

provement of SpaceNE with respect to the best of other baseline

methods. It can be seen from Table 3 that all the algorithms go

worse after contamination, but SpaceNE still performs better than

its counterparts. Moreover, we can find that compared with other

Model precision precision recall recall

70% 90% 70% 90%

SpaceNE -0.54 -0.24 -0.01 -0.01
GNE -1.26 -0.96 -0.03 -0.26

MNMF -2.71 -2.05 -0.02 -0.06

Struc2Vec -1.01 -0.99 -0.02 -0.02

Gain of SpaceNE [%] 46.53 75 50 50

Table 3: The link prediction results on different percentages
of the training dataset, Amherst_noise. The values are reduc-
tion in precision (or recall) of the algorithms after adding
the noise.

community preserving methods (MNMF and GNE), SpaceNE can

not only preserve a deeper hierarchical community structure, but

it is also less affected by noise in a complex network.

6.3 Alleviating Space Warps
To evaluate how SpaceNE alleviates space warps, we conduct ex-

periments on link prediction, verifying whether it relieves the prob-

lem owned by its community-aware counterparts. In addition, we

present an illustration of how GNE and SpaceNE preserve distances

between pairwise, intra-community nodes as the depth increases.

6.3.1 Link Prediction. We conduct link prediction experiments on

all three datasets. We sample a proportion of edges from the initial

network, which are used as positive samples, alongwith an identical

number of random negative edges. We take the inner product of

embedding vectors as the score for each sample, which are then

ranked where the samples with their score in top 50% are predicted

as “positive” edges. We report precision as the metric, which is

equivalent to recall as we use an identical number of positive and

negative samples.

The results of are reported in Table 4. Intuitively, community-

aware methods are inherently compromised in link prediction tasks

as, compared to Skip-Gram based model which preserves primarily

proximity between pairwise nodes, their community-aware coun-

terparts tend to sacrifice such pairwise properties for better mod-

eling of clustering properties and hence warping the space where

vertices reside, which can be exemplified by GNE and MNMF be-

ing gravely defeated by Skip-Gram models including DeepWalk.

In contrast, our model, SpaceNE, is able to address more complex

community structures without compromising its performance com-

pared with its Skip-Gram counterparts. It is hence concluded that
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our modeling of communities using subspaces possesses a wider

range of applicable fields in that it does not enhance community

structures at the expense of other key properties.

6.3.2 Distance between pairwise, intra-community nodes. In order

to demonstrate why SpaceNE performs better on the task of link

prediction than other community preserving methods, here we

show the average distance between pairwise, intra-community

nodes, which will be affected most significantly by space warps in

GNE.

As SpaceNE is able to preserve the distances among nodes rea-

sonable without making them too close as GNE, we calculate the

average distance of intra-community node pairs on different layers.

Specifically, the average distance of intra-community node pairs

on layer l is calculated as

1

|Ml |

|M l |∑
i=1

(
Avд_Dis(Cli )

)
, (14)

whereMl
is the number of communities on the l-th layer. Avд_Dis

is the average distance of all nodes pairs belonging to the i-th

community on the l-th layer Cli , which can be calculated by

Avд_Dis(Cli ) =
1

|Cli | |C
l
i − 1|

∑
x,y∈C l

i ,x,y

D(x ,y). (15)

D(x ,y) is the Euclidean distance between vector representations

of node x and node y. We use Sync_6, introduced previously as an

artificial network consisting of a 6-layer community. Fig.3 shows

the results with varying numbers of layers, where the y-coordinate

scale is logarithmic. Fig. 3 shows that the average distance decays
exponentially in GNE, while linearly in SpaceNE. This result partly

explains why SpaceNE is superior to GNE in essence: the nodes are

too close to each other so that they can not be distinguished.

Model Amherst Georgetown UC

SpaceNE 85.61 89.28 91.32

GNE 62.07 68.97 51.25

MNMF 48.89 49.76 50.05

DeepWalk 86.40 89.16 91.39

LINE 74.37 76.58 71.22

Struc2Vec 51.77 49.94 46.83

SpectralClustering 37.76 40.63 38.68

Table 4: The link prediction results on different datasets.

6.4 Eliminating the “Curse” of Depth
To evaluate the performance of modeling extremely deep hierar-

chies, experiments are conducted on deep hierarchical community

detection task. The basic properties of our dataset “Sync_6” are

shown in Table 1. “Sync_6” is a 6-layer synthetic dataset. We ap-

plied K-means to the learned node representations. We compare the

differences between the clustering results and the prior community

division at different layers of the hierarchical community tree. Ad-

justed rand index (ARI), ranging from -1 to 1, is an index reflecting

the similarity between two sets, thus it is applied as an index to
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Figure 3: Average Distance with the increasing of layers

evaluate the performance of community preservation. The closer

ARI is to 1, the better the performance of community detection is.

Fig.5 illustrates the effect of the number of layers on the hierar-

chical community detection (excluding the root, for there is only

one community in the root layer). The results show that the hierar-

chical community structure can be integrally preserved by SpaceNE,

no matter how deep the hierarchical community or how many com-

munities exist within the network. Obviously, when the number of

layers reaches 4, the radii of spheres in GNE are unduly small, thus

the accuracy of community detection begins to decline, which is

probably cause by underflow as the number of layers increase and

the spheres shrink.

Besides, the experimental results illustrate that DeepWalk and

LINE are incompetent at structure preservation. While DeepWalk

can preserve part of the hierarchical information in the process

of random walks, the results show when the number of layers ex-

ceeds 4, the performance of DeepWalk drastically declines. LINE

performed even worse compared to DeepWalk, as LINE only con-

siders the local structure as far as 2 steps away of each node and

does not model the hierarchical community information. MNMF

only preserves community at some layers but not all, leading to

poor performance after a few layers. It is worth mentioning that

as a global structure preserving algorithm, Struc2Vec performs the

best at layer 5, while becomes worse at the deeper layers.

6.5 Efficiency
To demonstrate the efficiency advantage of SpaceNE, we compared

the running time of SpaceNE, GNE, Struc2Vec and MNMF, methods

capturing the community or global structure. The three datasets

from small to large are described in Table 1. All efficiency exper-

iments were conducted on a single machine with a 12GB mem-

ory GPU. Results are presented in Fig. 6. MNMF only considers a

single-layer community, thus the running time is shorter. Although

Struc2Vec captures some global structural information, its optimiza-

tion is too slow, which is not suitable for large networks. Although

GNE and SpaceNE have similar time complexity in theory, the con-

vergence of SpaceNE is faster. The reason is that GNE preserves the
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(b) GNE  (c) MNMF

(e) LINE (f) DeepWalk(d) Stru2vec

(a) SpaceNE

Figure 4: The visualization of vertex representations in 2-D space from different models.
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Figure 5: The comparison of hierarchical community preser-
vation on different models. A 6-layer generated hierarchical
networks is used.

community structure through projections to the sphere. Compared

with the linear matrix multiplication of subspace, the optimization

of GNE is more complex and requires more epochs. The result

shows that SpaceNE is scalable to large networks.

6.6 Visualization
We visualize the “Sync_show” network used in [7]. Fig.4 shows the

visualization experiments. For all experiments in the comparison,

we first embed the network into low-dimensional spaces, and then

map the low-dimensional vectors of the vertices to a 2-D space with
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Figure 6: The running time on different datasets.

t-SNE[16] package. Note that [7] maps GNE directly into two-
dimensional space, which is different from the other methods.

Thus in order to unify the experimental standards, we do not use

the method in this work. We use t-SNE to conduct dimensionality

reduction for all methods.

Fig.4 shows that the SpaceNE preserves both relationship among

communities and relationship within the community. Although

GNE keeps the relationship among communities, the nodes from

the same community are too close to each other, which means the

relationship among the nodes in the same community is ignored.

This proves the space warp of GNE again, from a new view. Addi-

tionally, SpaceNE has an outstanding performance on clustering

vertices compared with other methods.
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7 CONCLUSION AND FUTUREWORK
In this paper, we proposed SpaceNE, introducing subspaces to the

field of community network embedding. To the best of our knowl-

edge, this work is the first attempt of introducing subspaces into

network representation learning. Specifically, we design elaborate

objectives preserving proximity between pairwise nodes, across

communities, along with constraints on subspace dimension which

was then approximated by a differentiable one, leading to efficient

optimization of our model. Empirically, we verify SpaceNE in a

variety of datasets and applications. Extensive experimental re-

sults demonstrate the advantages of SpaceNE, especially on link

prediction, hierarchical community preservation.

Here we focus on the hierarchical network embedding by using

subspace theory. Nevertheless, the theory of subspace is largely

overlooked in the field of network representation learning. For

future work, one intriguing direction is utilizing subspace theory

to deal with the heterogeneity of complex networks. Also, in real-

life scenes, such as neighborhood-based recommendation, when

searching for the nearest neighbor of an item, the search engine

only needs to search in the lower-dimensional subspace, which can

improve the efficiency greatly.
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